DOI QR코드

DOI QR Code

Aeroelastic behavior of nano-composite beam-plates with double delaminations

  • Mousavi, S.B. (Department of Mechanical Engineering, Quchan University of Technology) ;
  • Yazdi, Ali A. (Department of Mechanical Engineering, Quchan University of Technology)
  • Received : 2019.04.01
  • Accepted : 2019.11.14
  • Published : 2019.12.10

Abstract

In this paper aeroelastic behavior of 3-phase nano-composite beam-plate with double delaminations is investigated. It is tried to study the effect of carbon nano-tubes (CNTs) on critical flutter pressure of reinforced damaged nano-composite structures. In this case, the CNTs are appending to the polymer matrix uniformly. The Eshelby-Mori-Tanaka model is used to obtain the effective material properties of 3-phase nano-composite beam-plate. To investigate the aeroelastic behavior of delaminated beam-plate subjected to supersonic flow, it is assumed that the damaged segments are forced to vibrate together. The boundary conditions and auxiliary conditions at edges of delaminated segments are used to predict critical flutter pressure. The influence of CNTs and different delamination parameters such as delamination length, axial position and its position through thickness are investigated on critical flutter pressure.

Keywords

References

  1. Alidoost, H., and Rezaeepazhand, J. (2017), Instability of a delaminated composite beam subjected to a concentrated follower force", Thin-Wall. Struct., 120, 191-202. https://doi.org/10.1016/j.tws.2017.08.032
  2. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, B. (2004), "Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64, 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002
  3. He, X.Q., Rafiee, M., Mareishi, S. and Liew, K.M. (2015), "Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams", Compos. Struct., 131, 1111-1123. https://doi.org/10.1016/j.compstruct.2015.06.038
  4. Hu, Y.G., Liew, K.M. and Wang, Q. (2012), "Modeling of vibrations of carbon nanotubes", Procedia Eng., 31, 343-347. https://doi.org/10.1016/j.proeng.2012.01.1034
  5. Kepple, K.L., Sanborn, G.P., Lacasse, P.A., Gruenberg, K.M. and Ready, W.J. (2008), "Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes", Carbon, 46, 2026-2033. https://doi.org/10.1016/j.carbon.2008.08.010
  6. Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., Int. J., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387
  7. Kim, M.G., Hong, J.S., Kang, S.G. and Kim, C.G. (2008), "Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperature", Compos. Part A: Appl. Sci. Manuf., 39, 647-654. https://doi.org/10.1016/j.compositesa.2007.07.017
  8. Mehar, K. and Panda, S.K. (2016), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", IOP Conference Series: Materials Science and Engineering, 115, 012014. https://doi.org/10.1088/1757-899X/115/1/012014
  9. Murugan, S., Ganguli, R. and Harursampath, D. (2012), "Aeroelastic response of composite helicopter rotor with random material properties", J. Aircraft, 45(1), 306-322. https://doi.org/10.2514/1.30180
  10. Ozdemir, N.G., Zhang, T., Aspin, I., Scaropa, F., Hadavinia, F.H. and Song, Y. (2016), "Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications", Express Polym. Lett., 10, 394-407. https://doi.org/10.3144/expresspolymlett.2016.37
  11. Rafiee, M., He, X.Q. and Liew, K.M. (2014a), "Nonlinear analysis of piezoelectric nano-composite energy harvesting plates", Smart Mater. Struct., 23, 065001. https://doi.org/10.1088/0964-1726/23/6/065001
  12. Rafiee, M., Liu, X.F., He, X.Q. and Kitipornchai, S. (2014b), "Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates", J. Sound Vib., 333, 3236-3251. https://doi.org/10.1016/j.jsv.2014.02.033
  13. Rafiee, M., Nitzsche, F. and Labrosse, M. (2016), "Rotating nanocomposite thin-walled beams undergoing large deformation", Compos. Struct., 150, 191-199. https://doi.org/10.1016/j.compstruct.2016.05.014
  14. Rafiee, M., Nitzsche, F. and Labrosse, M. (2017), "Dynamics, vibration and control of rotating composite beams and blades: A critical review", Thin-Wall. Struct., 119, 795-819. https://doi.org/10.1016/j.tws.2017.06.018
  15. Ribeiro, P. (2016), "Non-local effects on the non-linear modes of vibration of carbon nano-tubes under electrostatic actuation", Int. J. Non-Linear Mech., 87, 1-20. https://doi.org/10.1016/j.ijnonlinmec.2016.07.007
  16. Rizov, V.I. (2017), "Non-linear study of mode II delamination fracture in functionally graded beams", Steel Compos. Struct., Int. J., 23(3), 263-271. https://doi.org/10.12989/scs.2017.23.3.263
  17. Seidi, J. and Kamarian, S. (2017), "Free vibrations of non-uniform CNT/fiber/polymer nano-composite beams", Curved Layer Struct., 4, 21-30. https://doi.org/10.1515/cls-2017-0003
  18. Shishesaz, M., Kharazi, M., Hosseini, P. and Hosseini, M. (2017), "Buckling behavior of composite plates with a pre-central circular delamination defect under in-plane uniaxial compression", J. Computat. Appl. Mech., 48(1), 111-122. https://doi.org/10.22059/jcamech.2017.234593.147
  19. Shi, Z., Yao, Z., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbonnanotube-reinforced composite beams with arbitrary boundary conditions", Scientific Reports, 7, 12909. https://doi.org/10.1038/s41598-017-12596-w
  20. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2017), "Multiscale approach for three-phase CNT/polymer/fiber laminated nano-composite structures", Polym. Compos., 40(S1), E102-E126. https://doi.org/10.1002/pc.24520
  21. Tracy, J.J. and Pardoen, G.C. (1989), "Effect of delamination on the natural frequencies of composite laminates", J. Compos. Mater., 23, 1200-1215. https://doi.org/10.1177/002199838902301201
  22. Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., Tanimoto, T. and Friedrich, K. (2007), "On the improvement of toughness of cfrps with resin doped with cnf and pzt particles", Compos. Part A: Appl. Sci. Manuf., 38(4), 1159-1162. https://doi.org/10.1016/j.compositesa.2006.04.016
  23. Yazdi, A.A. (2012), "Flutter of delaminated cross-ply laminated cylindrical shells", Compos. Struct., 94, 2888-2894. https://doi.org/10.1016/j.compstruct.2012.03.042
  24. Yazdi, A.A. and Rezaeepazhand, J. (2013), "Applicability of small-scale models in prediction flutter pressure of delaminated composite beam plates", Int. J. Damage Mech., 22(4), 590-601. https://doi.org/10.1177/1056789512456318
  25. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2017), "Free vibration analysis of FG-CNT reinforced composite straight-sided quadrilateral plates resting on elastic foundations using the IMLS-Ritz method", J. Vib. Control, 23(6), 1026-1043. https://doi.org/10.1177/1077546315587804
  26. Zheng, N., Huang, Y., Liu, H.Y., Gao, J. and Mai, Y.W. (2017), "Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves", Compos. Sci. Technol., 140, 8-15. https://doi.org/10.1016/j.compscitech.2016.12.017
  27. Zemirline, A., Ouali, M., and Mahieddine, A. (2015), "Dynamic behavior of piezoelectric bimorph beams with a delamination zone", Steel Compos. Struct., Int. J., 19(3), 759-776. https://doi.org/10.12989/scs.2015.19.3.759