• Title/Summary/Keyword: Critical bone defect

Search Result 67, Processing Time 0.023 seconds

Effects of various membranes on periodontal tissue regeneration;a meta-analysis of the histomorphometry (성견 치주 골결손부에서의 수종의 차단막에 의한 치주조직 재생 효과;조직계측학적 메타 분석)

  • Lee, Jung-Seok;Lim, Hyun-Chang;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Chang-Sung;Lee, Yong-Keun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.465-478
    • /
    • 2007
  • Various periodontal barrier membranes used in many clinical and experimental fields, and many recent studies of membranes have reported good results. To improve clinical results, selection of barrier membranes is an important factor. So, we need not only to evaluate various barrier mem-branes, but also to understand the property of barrier membranes appropriate to defect characteristics. For this purpose, this study reviewed available literature, evaluated comparable experimental models, and compared various barrier membranes. From above mentioned methods, the following conclusions are deduced. 1. In i-wall periodontal defect models, new bone formation showed a consistent result, almost 30% of the defect size. New cementum formations measured mostly 40% of the defect size, but showed more variations than new bone formations. This seems to be resulted form difference in experimental methods, so standardization in experimental methods is needed for future studies. 2. Application PLGA barrier membrane to periodontal defect demonstrated improved healing in new bone and new cementum. 3. There was a minimal periodontal regeneration with calcium sulfate barrier membrane only. But, there was better healing pattern in combination of calcium sulfate membrane with bone graft material, such as DFDBA, 4. There was no significant difference between the experimental group that used chitosan mem-brane only and the control group. But, in combination with bone graft material for space maintanence, periodontal regeneration was improved. Overall, Space maintenance is a critical factor for Guided tissue regeneration using barrier membranes. Also, a barrier membrane itself that has difficulty in maintaining space, achieved better result when used with graft material.

The influence of root surface distance to alveolar bone and periodontal ligament on periodontal wound healing

  • Montevecchi, Marco;Parrilli, Annapaola;Fini, Milena;Gatto, Maria Rosaria;Muttini, Aurelio;Checchi, Luigi
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.5
    • /
    • pp.303-319
    • /
    • 2016
  • Purpose: The purpose of this animal study was to perform a 3-dimensional micro-computed tomography (micro-CT) analysis in order to investigate the influence of root surface distance to the alveolar bone and the periodontal ligament on periodontal wound healing after a guided tissue regeneration (GTR) procedure. Methods: Three adult Sus scrofa domesticus specimens were used. The study sample included 6 teeth, corresponding to 2 third mandibular incisors from each animal. After coronectomy, a circumferential bone defect was created in each tooth by means of calibrated piezoelectric inserts. The experimental defects had depths of 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm, with a constant width of 2 mm. One tooth with no defect was used as a control. The defects were covered with a bioresorbable membrane and protected with a flap. After 6 months, the animals were euthanised and tissue blocks were harvested and preserved for micro-CT analysis. Results: New alveolar bone was consistently present in all experimental defects. Signs of root resorption were observed in all samples, with the extent of resorption directly correlated to the vertical extent of the defect; the medial third of the root was the most commonly affected area. Signs of ankylosis were recorded in the defects that were 3 mm and 7 mm in depth. Density and other indicators of bone quality decreased with increasing defect depth. Conclusions: After a GTR procedure, the periodontal ligament and the alveolar bone appeared to compete in periodontal wound healing. Moreover, the observed decrease in bone quality indicators suggests that intrabony defects beyond a critical size cannot be regenerated. This finding may be relevant for the clinical application of periodontal regeneration, since it implies that GTR has a dimensional limit.

Bone regenerative effects of recombinant human bone morphogenetic protein-2 employed protein transduction domain (Protein transduction domain을 이용한 recombinant human bone morphogenetic protein-2의 골재생효과)

  • Jung, Sung-Won;Kim, Nam-Hee;Yook, Jong-In;Kim, Chang-Sung;Kim, Hyung-Jun;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.497-509
    • /
    • 2007
  • Bone morphogenetic proteins(BMPs) are regarded as members of the transforming growth $factor-{\beta}$ superfamily with characteristic features in their amino acid sequences. A number of studies have demonstrated the biologic activities of BMPs, which include the induction of cartilage and bone formation. Recently there was a attempt to overcome a limitation of mass production, and economical efficieny of rh-BMPs. The method producing PTD by using bacteria have advantages of acquiry a mass of proteins. Hences, a new treatment which deliver protein employed by protein transduction domain(PTD) has been tried. The purpose of this study was to evaluate the bone regenerative effect of TATBMP-2 and TAT-HA2-BMP-2 employed by PTD from HlV-1 TAT protein for protein translocation in the rat calvarial model. An 8mm calvarial, critical size osteotomy defect was created in each of 32 male Spraque-Dawley rats(weight $250{\sim}300g$). The animals were divided into 4 groups of 32 animals each (4 animals/group/healing interval). The defect was treated with TATBMP-2/ACS(Absorbable collagen sponge) (TATBMP-2 0.1mg/ml), TAT-HA2-BMP-2/ACS(TAT-HA2-BMP-2 0.1mg/ml), ACS alone or left untreated for surgical control(negative control). The rats were sacrificed at 2 or 8 weeks postsurgery, and the results were evaluated histologically. The results were as follows: New bone formation were not significantly greater in the TATBMP-2/ACS group relative to negative, and positive control groups. New bone was evident at the defect sites in TAT-HA2-BMP-2/ACS group relative to negative, positive control and TATBMP-2 groups. There were a little bone regeneration in TATBMP-2 groups. While, enhanced local bone formation were observed in TAT-HA2-BMP-2 group. But, The results was not the same in all rat defects. Therefore, further investigations are required to develop a method. which disperse homogenously, and adhere to target cells.

The effects of newly formed synthetic peptide on bone regeneration in rat calvarial defects

  • Choi, Jung-Yoo;Jung, Ui-Won;Kim, Chang-Sung;Eom, Tae-Kwan;Kang, Eun-Jung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • Purpose: Significant interest has emerged in the design of cell scaffolds that incorporate peptide sequences that correspond to known signaling domains in extracellular matrix and bone morphogenetic protein. The purpose of this study was to evaluate the bone regenerative effects of the synthetic peptide in a critical-size rat calvarial defect model. Methods: Eight millimeter diameter standardized, circular, transosseus defects created on the cranium of forty rats were implanted with synthetic peptide, collagen, or both synthetic peptide and collagen. No material was was implanted the control group. The healing of each group was evaluated histologically and histomorphometrically after 2- and 8-week healing intervals. Results: Surgical implantation of the synthetic peptide and collagen resulted in enhanced local bone formation at both 2 and 8 weeks compared to the control group. When the experimental groups were compared to each other, they showed a similar pattern of bone formation. The defect closure and new bone area were significantly different in synthetic peptide and collagen group at 8 weeks. Conclusions: Concerning the advantages of biomaterials, synthetic peptide can be an effective biomaterial for damaged periodontal regeneration.

EffeCt of tricalcium phosphate (TCP) as a scaffold during bone grafting using cultured periosteum-derived cells in a rat calvarial defect model (두개결손부 모델에서 배양된 골막유래세포를 이용한 골이식 시 지지체로서 TCP의 효과)

  • Shim, Kyung-Mi;Kim, Se-Eun;Kim, Jong-Choon;Bae, Chun-Sik;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The periosteum contains multipotent cells that can differentiate into osteoblasts and chondrocytes. Cultured periosteum-derived cells (PDCs) have an osteogenic capacity. The purpose of this study was to evaluate the interaction of PDCs with bone graft biomaterial. After cell isolation from the calvarial periosteum of Sprague-Dawley rats, cultured PDCs were placed in critical-sized calvarial defects with beta-tricalcium phosphate (${\beta}$-TCP). All rats were sacrificed 8 weeks after bone graft surgery, and the bone regenerative ability of bone grafting sides was evaluated by plain radiography, micro-computed tomography (CT), and histological examination. PDCs grafted with ${\beta}$-TCP displayed enhanced calcification in the defect site, density of regenerated bone and new bone formation within the defect and its boundaries. Furthermore, these PDCs more efficiently regenerated new bone as compared to grafted ${\beta}$-TCP only. The results suggest that cultured PDCs have the potential to promote osteogenesis in bone defects.

AN EXPERIMENTAL STUDY ON THE HEALING PROCESS OF TOOTHASH, PLASTER OF PARIS AND AUTOGENOUS BONE COMPOSITE GRAFTING IN DOGS (치아회분과 석고혼합제재 매식과 자가골 동시 이식후 치유과정에 관한 실험적 연구)

  • Yeo, Hwan-Ho;Jung, Jae-Hun;Lee, Sang-Ho;Kim, Heung-Jung;Kim, Young-Kyun;Lim, Seung-Cheul;Sul, In-Tak
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2000
  • The purpose of this study was to evaluate the efficacy of adding autogenous bone to the toothash-plaster mixture in the healing process of bone. Full-thickness round osseous defects with the diameter of 20mm were made at the calvarial bone of adult dogs (n=19) bilaterally, which were thought to be critical size defect. The right defects were repaired with the toothash-plaster mixture plus autogenous bone (compressed volume 0.3cc) and the left defects with only toothash-plaster mixture. At 2-, 4-, 8-, 12- and 20- week after implantation, dogs were sacrificed and evaluated the osseous healing of bony defects clinically, radiographically, and microscopically. The results were as follows; 1. At the clinical observation, the wound healed very well without any problem except severe swelling in the early period after operation. Slight depression was recognized at the both sides when the portions of cranial defect were palpated. 2. There were statistically significant differences between toothash-plaster mixture groups and autogenous bone added groups at the same period, and among the groups in the bone density of the digital radiograms (P<0.001). There was a tendency that bone density was increasing with time. 3. In light microscopic examination, new bone formation was more active in the autogenous bone added groups than toothash-plaster mixture groups at the early period after implantation but there is little difference at 20-week after implantation. 4. In fluorescent microscopic examination, the fluorescent band could be observed at the area of active bone formation and the band was more distinct in the autogenous bone added groups then toothash-plaster mixture groups. 5. In transmitted electron microscopic examination, organelles such as rER, Golgi complex and secretory granule and osteoblast were observed. In summary higher volume ratio of autogenous bone is needed to improve the bone healing in that there is little difference between toothash-plaster mixture group and autogenous bone added group at the 20-week after implantation in spite of new bone formation was more active in the autogenous bone added groups than toothash-plaster mixture groups at the early period after operation.

  • PDF

Stepwise verification of bone regeneration using recombinant human bone morphogenetic protein-2 in rat fibula model

  • Nam, Jung-Woo;Kim, Hyung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.6
    • /
    • pp.373-387
    • /
    • 2017
  • Objectives: The purpose of this study was to introduce our three experiments on bone morphogenetic protein (BMP) and its carriers performed using the critical sized segmental defect (CSD) model in rat fibula and to investigate development of animal models and carriers for more effective bone regeneration. Materials and Methods: For the experiments, 14, 16, and 24 rats with CSDs on both fibulae were used in Experiments 1, 2, and 3, respectively. BMP-2 with absorbable collagen sponge (ACS) (Experiments 1 and 2), autoclaved autogenous bone (AAB) and fibrin glue (FG) (Experiment 3), and xenogenic bone (Experiment 2) were used in the experimental groups. Radiographic and histomorphological evaluations were performed during the follow-up period of each experiment. Results: Significant new bone formation was commonly observed in all experimental groups using BMP-2 compared to control and xenograft (porcine bone) groups. Although there was some difference based on BMP carrier, regenerated bone volume was typically reduced by remodeling after initially forming excessive bone. Conclusion: BMP-2 demonstrates excellent ability for bone regeneration because of its osteoinductivity, but efficacy can be significantly different depending on its delivery system. ACS and FG showed relatively good bone regeneration capacity, satisfying the essential conditions of localization and release-control when used as BMP carriers. AAB could not provide release-control as a BMP carrier, but its space-maintenance role was remarkable. Carriers and scaffolds that can provide sufficient support to the BMP/carrier complex are necessary for large bone defects, and AAB is thought to be able to act as an effective scaffold. The CSD model of rat fibula is simple and useful for initial estimate of bone regeneration by agents including BMPs.

Effects of rhBMP-2 with various carriers on bone regeneration in rat calvarial defect (백서 두개골 결손에서 rhBMP-2와 다양한 carrier의 골재생 유도효과)

  • Lee, Seo-Kyoung;Kim, Ji-Sun;Kang, Eun-Jung;Eum, Tae-Kwan;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.125-134
    • /
    • 2008
  • Purpose: Bone morphogenetic protein (BMP) is a potent differentiating agent for cells of the osteoblastic lineage. It has been used in the oral cavity under a variety of indications and with different carriers. However, the optimal carrier for each indication is not known. This study evaluated the bone regenerative effect of rhBMP-2 delivered with different carrier systems. Materials and Methods: 8 mm critical-sized rat calvarial defects were used in 60 male Sprague-Dawley rats. The animals were divided into 6 groups containing 10 animals each. Two groups were controls that had no treatment and absorbable collagen membrane only. 4 groups were experimentals that contained rhBMP-2 only and applied with absorbable collagen sponge($Collatape^{(R)}$), $MBCP^{(R)}$, Bio-$Oss^{(R)}$ each. The histological and histometric parameters were used to evaluate the defects after 2- or 8-week healing period. The shape and total augmented area were stable in all groups over the healing time. Results: New bone formation was significantly greater in the rhBMP-2 with carrier group than control group. rhBMP-2/ACS was the highest in bone density but gained less new bone area than rhBMP-2/$MBCP^{(R)}$ and rhBMP-2/Bio-$Oss^{(R)}$. The bone density after 8 weeks was greater than that after 2 weeks in all groups. However, rhBMP-2 alone failed to show the statistically significant difference in new bone area and bone density compared to control group. Also $MBCP^{(R)}$ and Bio-$Oss^{(R)}$ particles remained after 8 weeks healing period. Conclusion: These results suggest that rhBMP-2 with carrier system is an excellent inductive agent for bone formation and we can use it as the predictable bone tissue engieering technique. Future study will likely focus on the kinetics of BMP release and development of carriers that is ideal for it.

BONE TISSUE ENGINEERING USING PLLA/HA COMPOSITE SCAFFOLD AND BONE MARROW MESENCHYMAL STEM CELL (PLLA/HA Composite Scaffold와 골수 줄기세포를 이용한 조직공학적 골재생에 대한 연구)

  • Kim, Byeong-Yol;Jang, Hyon-Seok;Rim, Jae-Suk;Lee, Eui-Seok;Kim, Dong-Hyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.4
    • /
    • pp.323-332
    • /
    • 2008
  • Aim of the study: Scaffolds are crucial to tissue engineering/regeneration. Biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. In this study, poly(L-lactide)/hydroxyapatite(PLLA/HA) composite scaffolds were fabricated for in vivo bone tissue engineering. Material & methods: In this study, PLLA/HA composite microspheres were prepared by double emulsion-solvent evaporation method, and were evaluated in vivo bone tissue engineering. Bone marrow mesenchymal stem cell from rat iliac crest was differentiated to osteoblast by adding osteogenic medium, and was mixed with PLLA/HA composite scaffold in fibrin gel and was injected immediately into rat cranial bone critical size defect(CSD:8mm in diameter). At 1. 2, 4, 8 weeks after implantation, histological analysis by H-E staining, histomorphometric analysis and radiolographic analysis were done. Results: BMP-2 loaded PLLA/HA composite scaffolds in fibrin gel delivered with osteoblasts differentiated from bone marrow mesenchymal stem cells showed rapid and much more bone regeneration in rat cranial bone defects than control group. Conclusion: This results suggest the feasibility and usefulness of this type of scaffold in bone tissue engineering.

The evaluation of the correlation between histomorphometric analysis and micro-computed tomography analysis in AdBMP-2 induced bone regeneration in rat calvarial defects

  • Park, Shin-Young;Kim, Kyoung-Hwa;Koo, Ki-Tae;Lee, Kang-Woon;Lee, Yong-Moo;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.218-226
    • /
    • 2011
  • Purpose: Micro-computed tomography (micro-CT) has been widely used in the evaluation of regenerated bone tissue but the reliability of micro-CT has not yet been established. This study evaluated the correlation between histomorphometric analysis and micro-CT analysis in performing new bone formation measurement. Methods: Critical-size calvarial defects were created using a 8 mm trephine bur in a total of 24 Sprague-Dawley rats, and collagen gel mixed with autogenous rat bone marrow stromal cells (BMSCs) or autogenous rat BMSCs transduced by adenovirus containing bone morphogenic protein-2 (BMP-2) genes was loaded into the defect site. In the control group, collagen gel alone was loaded into the defect. After 2 and 4 weeks, the animals were euthanized and calvaria containing defects were harvested. Micro-CT analysis and histomorphometric analysis of each sample were accomplished and the statistical evaluation about the correlation between both analyses was performed. Results: New bone formation of the BMP-2 group was greater than that of the other groups at 2 and 4 weeks in both histomorphometric analysis and micro-CT analysis (P=0.026, P=0.034). Histomorphometric analysis of representative sections showed similar results to histomorphometric analysis with a mean value of 3 sections. Measurement of new bone formation was highly correlated between histomorphometric analysis and micro-CT analysis, especially at the low lower threshold level at 2 weeks (adjusted $r^2=0.907$, P<0.001). New bone formation of the BMP-2 group analyzed by micro-CT tended to decline sharply with an increasing lower threshold level, and it was statistically significant (P<0.001). Conclusions: Both histomorphometric analysis and micro-CT analysis were valid methods for measurement of the new bone in rat calvarial defects and the ability to detect the new bone in micro-CT analysis was highly influenced by the threshold level in the BMP-2 group at early stage.