DOI QR코드

DOI QR Code

EffeCt of tricalcium phosphate (TCP) as a scaffold during bone grafting using cultured periosteum-derived cells in a rat calvarial defect model

두개결손부 모델에서 배양된 골막유래세포를 이용한 골이식 시 지지체로서 TCP의 효과

  • Shim, Kyung-Mi (Department of Radiology, Nambu University) ;
  • Kim, Se-Eun (College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Jong-Choon (College of Veterinary Medicine, Chonnam National University) ;
  • Bae, Chun-Sik (College of Veterinary Medicine, Chonnam National University) ;
  • Choi, Seok-Hwa (College of Veterinary Medicine, Chungbuk National University) ;
  • Kang, Seong-Soo (College of Veterinary Medicine, Chonnam National University)
  • Received : 2010.01.18
  • Accepted : 2011.02.22
  • Published : 2011.02.28

Abstract

The periosteum contains multipotent cells that can differentiate into osteoblasts and chondrocytes. Cultured periosteum-derived cells (PDCs) have an osteogenic capacity. The purpose of this study was to evaluate the interaction of PDCs with bone graft biomaterial. After cell isolation from the calvarial periosteum of Sprague-Dawley rats, cultured PDCs were placed in critical-sized calvarial defects with beta-tricalcium phosphate (${\beta}$-TCP). All rats were sacrificed 8 weeks after bone graft surgery, and the bone regenerative ability of bone grafting sides was evaluated by plain radiography, micro-computed tomography (CT), and histological examination. PDCs grafted with ${\beta}$-TCP displayed enhanced calcification in the defect site, density of regenerated bone and new bone formation within the defect and its boundaries. Furthermore, these PDCs more efficiently regenerated new bone as compared to grafted ${\beta}$-TCP only. The results suggest that cultured PDCs have the potential to promote osteogenesis in bone defects.

다능성 세포를 포함하는 골막은 골모세포와 연골세포로 분화될 수 있다. 그리고 배양된 골막유래세포는 골형성 능력을 가지고 있다. 이 연구의 목적은 골막유래 세포들과 골이식재 간의 상호작용을 평가하는 것이다. Sprague-Dawley 랫드의 두개골 골막에서 세포를 분리한 다음, 배양된 골막유래세포를 beta-tricalcium phosphate (${\beta}$-TCP)와 함께 임계결손부 크기의 두개결손부에 이식하였다. 모든 랫드는 골이식 수술 후 8주째에 희생되었으며, 골이식부의 골형성 능력은 일반방사선, micro CT 및 조직검사를 통해 평가되었다. ${\beta}$-TCP와 함께 이식된 골막유래세포는 골결손부에서 더욱 증가된 석회화작용을 나타내었으며, 골결손부 안쪽 및 가장자리에 골밀도 증가와 신생골이 형성되었다. 특히 골막유래세포는 ${\beta}$-TCP만 단독으로 이식하였을때보다 함께 이식 시 효과적으로 신생골을 형성하였다. 이러한 결과는 배양된 골막유래세포가 골결손부에서 골형성을 증진시킬 수 있는 가능성을 보였다.

Keywords

References

  1. P. S. Gomes, J. D. Santos and M. H. Fernandes, "Cell-induced response by tetracyclines on human bone marrow colonized hydroxyapatite and bonelike", Acta Biomater, Vol.4, No.3, pp.630-637, 2008. https://doi.org/10.1016/j.actbio.2007.12.006
  2. I. Drosse, E. Volkmer, R. Capanna, P. De Biase, W. Mutschler and M. Schieker, "Tissue engineering for bone defect healing: an update on a multi-component approach", Injury, Suppl 2, pp. S9-S20, 2008.
  3. Y. Sakata, T. Ueno, T. Kagawa, M. Kanou, T. Fujii, E. Yamachika and T. Sugahara, "Osteogenic potential of cultured human periosteum-derived cells - a pilot study of human cell transplantation into a rat calvarial defect model" J Craniomaxillofac Surg, Vol.34, No.8, pp.461-465, 2006. https://doi.org/10.1016/j.jcms.2006.07.861
  4. Q. Xu, H. Lu, J. Zhang, G. Lu, Z. Deng and A. Mo, "Tissue engineering scaffold material of porousnanohydroxyapatite/polyamide 66", Int J Nanomedicine, Vol.5, pp.331-335, 2010.
  5. 5. T. Matsuno, Y. Hashimoto, S. Adachi, K. Omata, Y. Yoshitaka, Y. Ozeki, Y. Umezu, Y. Tabata, M. Nakamura and T. Satoh, "Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering", Dent Mater J, Vol.27, No.6, pp.827-834, 2008. https://doi.org/10.4012/dmj.27.827
  6. M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig and D. R. Marshak, "Multilineage potential of adult human mesenchymal stem cells", Science, Vol.284, No.5411, pp.143-147, 1999. https://doi.org/10.1126/science.284.5411.143
  7. H. A. Declercq, R. M. Verbeeck, L. I. De Ridder, E. H. Schacht and M. J. Cornelissen, "Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures", Biomaterials, Vol.26, No.24, pp.4964-4974, 2005. https://doi.org/10.1016/j.biomaterials.2005.01.025
  8. E. J. Jansen, P. J. Emans, N. A. Guldemond, L. W. Van Rhijn, T. J. Welting, S. K. Bulstra and R. Kuijer, "Human periosteum-derived cells from elderly patients as a source for cartilage tissue engineering? " J Tissue Eng Regen, Vol.2, No.6, pp.331-339, 2008. https://doi.org/10.1002/term.100
  9. C. De Bari, F. Dell'Accio, J. Vanlauwe, J. Eyckmans, I. M. Khan, C. W. Archer, E. A. Jones, D. McGonagle, T. A. Mitsiadis, C. Pitzalis and F. P. Luyten, "Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis", Arthritis Rheum, Vol.54, No.4, pp.1209-1221, 2006. https://doi.org/10.1002/art.21753
  10. H. Agata, I. Asahina, Y. Yamazaki, M. Uchida, Y. Shinohara, M. J. Honda, H. Kagami and M. Ueda, "Effective bone engineering with periosteum-derived cells", J DentRes Vol.86, No.1, pp.79-83, 2007. https://doi.org/10.1177/154405910708600113
  11. K. H. Yoo, S. E. Kim, K. M. Shim, H. J. Park, S. H. Choi and S. S. Kang, "Effect of porcine cancellous bones on regeneration in rats with calvarial defect", J Life Science, Vol.20, No.8, pp.1207-1213, 2010. https://doi.org/10.5352/JLS.2010.20.8.1207
  12. M. Kanou, T. Ueno, T. Kagawa, T. Fujii, Y. Sakata, N. Ishida, J. Fukunaga and T. Sugahara, "Osteogenic potential of primed periosteum graft in the rat calvarial model", Ann Plast Surg, Vol.54, pp.71-78, 2005. https://doi.org/10.1097/01.sap.0000139562.42726.dd
  13. K. Hanada, L. A. Solchaga, A. I. Caplan, T. M. Hering, V. M. Goldberg, J. U. Yoo and B. Johnstone. "BMP-2 induction and TGF-beta 1 modulation of rat periosteal cell chondrogenesis", J Cell Biochem, Vol.81, No.2, pp.284-294, 2001. https://doi.org/10.1002/1097-4644(20010501)81:2<284::AID-JCB1043>3.0.CO;2-D

Cited by

  1. Periosteum tissue engineering—a review vol.4, pp.11, 2016, https://doi.org/10.1039/C6BM00481D