References
- Li Z, Yubao L, Aiping Y et al : Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J Mater Sci Mater Med 16 : 213, 2005 https://doi.org/10.1007/s10856-005-6682-3
- Okamoto M, Dohi Y, Ohgushi H et al : Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J Mater Sci Mater Med 17 : 327, 2006 https://doi.org/10.1007/s10856-006-8232-z
- Linhart W, Peters F, Lehmann W et al : Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 54 : 162, 2001 https://doi.org/10.1002/1097-4636(200102)54:2<162::AID-JBM2>3.0.CO;2-3
- Young CS, Abukawa H, Asrican R et al : Tissue-engineered hybrid tooth and bone. Tissue Eng 11 : 1599, 2005 https://doi.org/10.1089/ten.2005.11.1599
- Jung Y, Kim SS, Kim YH et al : A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 26 : 6314, 2005 https://doi.org/10.1016/j.biomaterials.2005.04.007
- Montjovent MO, Mathieu L, Hinz B et al : Biocompatibility of bioresorbable poly(L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng 11 : 1640, 2005 https://doi.org/10.1089/ten.2005.11.1640
- Rohner D, Hutmacher DW, Cheng TK et al : In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B Appl Biomater 15;66 : 574, 2003
- Williams JM, Adewunmi A, Schek RM et al : Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26 : 4817, 2005 https://doi.org/10.1016/j.biomaterials.2004.11.057
- Iejima D, Saito T, Uemura T : A collagen-phosphophoryn sponge as a scaffold for bone tissue engineering. J Biomater Sci Polym Ed 14 : 1097, 2003 https://doi.org/10.1163/156856203769231583
- Domaschke H, Gelinsky M, Burmeister B et al : In vitro ossification and remodeling of mineralized collagen I scaffolds. Tissue Eng 12 : 949, 2006 https://doi.org/10.1089/ten.2006.12.949
- Li Z, Ramay HR, Hauch KD et al : Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26 : 3919, 2005 https://doi.org/10.1016/j.biomaterials.2004.09.062
- Abbah SA, Lu WW, Chan D et al : In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem Biophys Res Commun 18;347 : 185, 2006
-
Fujibayashi S, Neo M, Kim HM et al : A comparative study between in vivo bone ingrowth and in vitro, apatite formation on
$Na_2O-CaO-SiO_2$ glasses Biomaterials 24 : 1349, 2003 https://doi.org/10.1016/S0142-9612(02)00511-2 - Tanahashi M, Yao T, Kokubo T et al : Apatite coating on organic polymers by a biomimetic process Am Ceram Soc 77 : 2805, 1994 https://doi.org/10.1111/j.1151-2916.1994.tb04508.x
- Tananhashi M, Yao T, Kokubo T et al : Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by glow-discharge treatment J Biomed Mater Res 29 : 349, 1995 https://doi.org/10.1002/jbm.820290310
- Somasundaran P, Markovic B : Interfacial properties of calcium phosphate in biological and industrial system, Switzerland, Tran Tech Pub, 1998, p.85
- Chun KW, Yoo HS, Yoon JJ et al : Biodegradable PLGA microcarries for injectable delivery of chondrocytes: Effect of surface modification on cell attachment and function Biotechnol Prog 20 : 1797, 2004 https://doi.org/10.1021/bp0496981
- Cho ER, Kang SW, Kim BS : Poly(lactic-co-glycolic acid) microspheres as a potential bulking agent for urological injection therapy: Preliminary results J Biomed Mater Res Part B Appl Biomater 72B 166, 2005 https://doi.org/10.1002/jbm.b.30138
- Kershen RT, Atala A : New advances in injectable therapies for the treatment of incontinence and vesicoureteral reflex Urol Clin North Am 26 : 81, 1999 https://doi.org/10.1016/S0094-0143(99)80008-1
- Morhenn VB, Lemperle G, Gallo RL : Phagocytosis of different particulate dermal filler substances by human macrophages and skin cells Dermatol Surg 28 : 484, 2002 https://doi.org/10.1046/j.1524-4725.2002.01273.x
- Boix D, Gauthier O, Guicheux J et al : Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: An experimental study in dogs J Periodontol 75 : 663, 2004 https://doi.org/10.1902/jop.2004.75.5.663
- Ito K, Yamada Y, Nagasaka T et al : Osteogenic potential of injectable tissue-engineered bone: A comparison among autogenous bone, bone substitute (Bio-oss), platelet-rich plasma, and tissue-engineered bone with respect to their mechanical properties and histological findings J Biomed Mater Res 73A : 63, 2005 https://doi.org/10.1002/jbm.a.30248
- Murphy WL, Kohn DH, Mooney DJ : Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro J Biomed Mater Res 50 : 50, 2000 https://doi.org/10.1002/(SICI)1097-4636(200004)50:1<50::AID-JBM8>3.0.CO;2-F
- Helen LH, Pollak SR, Ducheyene P : 45S5 bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in a solution containing fibronectin J Biomed Mater Res 54 : 454, 2001 https://doi.org/10.1002/1097-4636(20010305)54:3<454::AID-JBM200>3.0.CO;2-H
- Kokubo T, Himeno T, Kim HM et al : Process of bone like apatite formation on sintered hydroxyapatite in serum-containing protein Bioceramics, Switzerland, Tran Tech Pub, 2003, vol 16 p.139
- Peter SJ, Miller MJ, Yasko AW et al : Polymer concepts in tissue engineering J Biomed Mater Res (Appl Biomater) 43 : 422, 1998 https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<422::AID-JBM9>3.0.CO;2-1
- Martin C, Winet H, Bao JY : Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chabmbers Biomaterials 17 : 2373, 1996 https://doi.org/10.1016/S0142-9612(96)00075-0
- Zhu G, Mallery SR, Schwendeman SP : Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide) Nat Biotechnol 18 : 52, 2000 https://doi.org/10.1038/71916
- Nagano M, Kitsugi T, Nakamura T et al : Bone bonding ability of an apatite-coated polymer produced using a biomimetic method: a mechanical and histological study in vivo J Biomed Mater Res 31 : 487, 1996 https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<487::AID-JBM8>3.0.CO;2-H
- Yan WQ, Nakamura T, Kawanabe K et al : Apatite layer-coated titanium for use as bone bonding implants Biomaterials 18 : 1185, 1997 https://doi.org/10.1016/S0142-9612(97)00057-4
- Li P : Biomimetic nano-apatite coating capable of promoting bone ingrowth J Biomed Mater Res 66A : 79, 2003 https://doi.org/10.1002/jbm.a.10519
- Barrere F, van der Valk CM, Meijer G et al : Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats J Biomed Mater Res 67B : 655, 2003 https://doi.org/10.1002/jbm.b.10057
- Gundle R, Joyner CJ, Triffitt JT : Human bone tssue formation in diffusion chamber culture in vivo by bonederived cells and marrow stromal fibroblastic cells Bone 16 : 597, 1995 https://doi.org/10.1016/8756-3282(95)00112-Q
- Krebsbach PH, Mankani MH, Satomura K et al : Repair of craniotomy defects using bone marrow stromal cells Transplantation 66 : 1272, 1998 https://doi.org/10.1097/00007890-199811270-00002
- Krebsbach PH, Kuznetsov SA, Bianco P et al : Bone marrow stromal cells: characterization and clinical application Crit Rev Oral Biol Med 10 : 165, 1999 https://doi.org/10.1177/10454411990100020401
- Martin I, Muraglia A, Campanile G et al : Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow Endocrinology 138 : 4456, 1997 https://doi.org/10.1210/en.138.10.4456
- Haynesworth SE, Goshima J, Goldberg VM et al : Characterization of cells with osteogenic potential from human marrow Bone 13 : 81, 1992 https://doi.org/10.1016/8756-3282(92)90364-3
- Ohgushi H, Okumura M, Tamai S et al : Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative hnistomorphometric study of ectopic bone formation J Biomed Mater Res 24 :1563, 1990 https://doi.org/10.1002/jbm.820241202
- Krebsbach PH, Kuznetsov SA, Satomura K et al : Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts Transplantation 63 : 1059, 1997 https://doi.org/10.1097/00007890-199704270-00003
- Petite H, Viateau V, Bensaid W et al : tissue-engineered bone regeneration Nat Biotechnol 18 : 959, 2000 https://doi.org/10.1038/79449
- Murphy WL, Simmons CA, Kaigler D et al : Bone regeneration via biomineral presentation and induced angiogenesis J Dental Res 83 : 204, 2004 https://doi.org/10.1177/154405910408300304
- Oreffo RO, Driessens FC, Planell JA et al : Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements Biomaterials 19 : 1845, 1998 https://doi.org/10.1016/S0142-9612(98)00084-2
- Oreffo RO, Driessens FC, Planell JA et al : Effects of novel calcium phosphate cements on human bone marrow fibroblastic cells Tissue Eng 4 : 293, 1998 https://doi.org/10.1089/ten.1998.4.293
- Deligianni DD, Katsala ND, Koutsoukos PG et al : Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength Biomaterials 22 : 87, 2001 https://doi.org/10.1016/S0142-9612(00)00174-5
- Handschel J, Wiesmann HP, Stratmann U et al : TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model Biomaterials 23 : 1689, 2003 https://doi.org/10.1016/S0142-9612(01)00296-4
- Murphy WL, Hsiong S, RichardsonTP et al : Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells in vitro Biomaterials 26 : 303, 2005 https://doi.org/10.1016/j.biomaterials.2004.02.034
- Boyan BD, Lohmann CH, Somers A et al : Potential of porous poly-D,L-lactide-co-glycolide particles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in vivo J Biomed Mater Res 46 : 51, 1999 https://doi.org/10.1002/(SICI)1097-4636(199907)46:1<51::AID-JBM6>3.0.CO;2-I
- Urist MR : Bone formation by autoinduction. Science 150 : 893, 1965 https://doi.org/10.1126/science.150.3698.893
- Lieberman JR, Le LQ, Wu L et al : Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res 16 : 330, 1998 https://doi.org/10.1002/jor.1100160309
- Yamashita H, ten Dijke P, Huylebroeck D et al : Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J Cell Biol 130 : 217, 1995 https://doi.org/10.1083/jcb.130.1.217
- Wikesjo UM, Sigurdsson TJ, Lee MB et al : Dynamics of wound healing in periodontal regenerative therapy. J Calif Dent Assoc 23 : 30, 1995
- Gerhart TN, Kirker-Head CA, Kriz MJ et al : Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop Relat Res (293) : 317, 1993
- Origuchi N, Ishidou Y, Nagamine T et al : The spatial and temporal immunolocalization of TGF-beta 1 and bone morphogenetic protein-2/-4 in phallic bone formation in inbred Sprague Dawley male rats. In Vivo 12 : 473, 1998
- Isobe M, Yamazaki Y, Mori M et al : The role of recombinant human bone morphogenetic protein-2 in PLGA capsules at an extraskeletal site of the rat. J Biomed Mater Res 45 : 36, 1999 https://doi.org/10.1002/(SICI)1097-4636(199904)45:1<36::AID-JBM5>3.0.CO;2-I
- Boyne PJ ; Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. J Bone Joint Surg Am 83-A Suppl 1(Pt 2) : S146, 2001
- Khan SN, Lane JM : The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in orthopaedic applications. Expert Opin Biol Ther 4 : 741, 2004 https://doi.org/10.1517/14712598.4.5.741
- Friedenstein A, Kuralesova AI : Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation 12 : 99, 1971 https://doi.org/10.1097/00007890-197108000-00001