• 제목/요약/키워드: Creep behavior

검색결과 591건 처리시간 0.028초

계측 자료의 비선형최소자승법을 이용한 파괴시간 예측 (Failure Time Prediction by Nonlinear Least Square Method with Deformation Data)

  • 윤용균;김병철;조영도
    • 터널과지하공간
    • /
    • 제19권6호
    • /
    • pp.558-566
    • /
    • 2009
  • 암석의 시간 의존적 거동은 기본적인 역학적 특성으로서 시간 의존적으로 거동을 분석하여 암반구조물의 파괴시간을 예측하는 것은 매우 중요하다. Voight가 제안한 재료 파괴 예측식($\ddot{\Omega}=A\dot{\Omega}^\alpha$, 여기서 $\Omega$는 변형률이나 변위와 같은 측정 가능한 물리량이고 A & $\alpha$는 상수이다)을 이용하여 터널, 사면 및 실내 크리프 시험으로부터 측정된 변위나 변형률로부터 파괴시간을 예측하고자 하였다. Voight식을 1차 및 2차 적분하여 구한 변위속도 및 변위식에 비선형최소자승법을 적용하여 A & $\alpha$를 구하였으며 이들 상수는 파괴시간을 예측하는데 사용되었다. 예측된 파괴시간은 실제 파괴시간과 잘 일치하는 것으로 나타났다. 크리프 변형률과 변형률속도에 선형역속도법을 적용하여 구한 예측 파괴시간은 변형률과 변형률속도를 이용하여 구한 파괴시간보다 오차가 큰 것으로 나타났다.

유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성 (Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects)

  • 하정수;고승기;옹장우
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

Recent results on the analysis of viscoelastic constitutive equations

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • 제14권1호
    • /
    • pp.33-45
    • /
    • 2002
  • Recent results obtained for the port-pom model and the constitutive equations with time-strain separability are examined. The time-strain separability in viscoelastic systems Is not a rule derived from fundamental principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The violation of separability in the short-time response just after a step strain is also well understood (Archer, 1999). In constitutive modeling, time-strain separability has been extensively employed because of its theoretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic analysis, we show that both differential and integral constitutive equations based on time-strain separability are either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamardtype instability of the Doi-Edwards model results from the time-strain separability in its formulation, and its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the port-pom equations have been derived in the integral/differential form and also in the simplifled differential type by McLeish and carson on the basis of the reptation dynamics with simplifled branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However cautious attention has to be paid when one employs the simplified version of the constitutive equations without arm withdrawal, since neglecting the arm withdrawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms.

단면해석법을 이용한 합성형 휨 부재의 재령 종속적 처짐해석 (Concrete Aging-Dependent Deflection Analysis of Flexural Composite Members Using Sectional Analysis Method)

  • 성원진;김정현;이용학
    • 콘크리트학회논문집
    • /
    • 제16권2호
    • /
    • pp.155-162
    • /
    • 2004
  • 초기재령 콘크리트의 탄성계수 변화와 크리프 및 건조수축 현상을 고려하는 강 합성 거더의 시간종속적 처짐해석을 수행하였다. 초기재령 콘크리트의 탄성계수 발현과정을 고려한 구성관계는 총 응력-변형률 관계를 Taylor의 선형급수 확장을 이용하여 기준시간에 관하여 확장함으로써 시간종속적 증분형태로 유도하였다. 강 박스거더의 단면형상 변화 위치와 지점부를 기준하여 거더를 분할하고 분할된 구간에서 단면해석을 통해 곡률을 구하여 2차 다항식으로 가정한 처짐곡선에 경계조건을 적용함으로써 처짐곡선의 증분관계식을 유도하였다. 부모멘트 구간의 강 박스 하단에 콘크리트를 타설한 이중합성 박스거더의 초기재령 거동해석을 수행하였으며, 강 박스 하단의 콘크리트 타설두께가 거더의 거동에 주는 영향을 수치해석 결과를 통해 분석하였다. 끝으로, 보 요소를 이용한 유한요소해석 결과와 개발된 단면해석법을 이용한 해석 결과를 비교함으로써 정확성을 검증하였다.

Effect of Crystallographic Orientation on Fracture Mechanism of Ni-Base Superalloy

  • Han, Chang-Suk;Lim, Sang-Yeon
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.630-635
    • /
    • 2015
  • The fatigue strength of a nickel-base superalloy was studied. Stress-controlled fatigue tests were carried out at $700^{\circ}C$ and 5 Hz using triangular wave forms. In this study, two kinds of testing procedures were adopted. One is the conventional tension-zero fatigue test(R = 0). The other was a procedure in which the maximum stress was held at 1000 MPa and the minimum stress was diverse from zero to 1000 MPa at 24 and $700^{\circ}C$. The results of the fatigue tests at $700^{\circ}C$ indicate that the fracture mechanism changed according to both the mean stress and the stress range. At a higher stress range, ${\gamma}^{\prime}$ precipitates are sheared by a/2<110> dislocation pairs coupled by APB. Therefore, in a large stress range, the deformation occurred by shearing of ${\gamma}^{\prime}$ by a/2<110> dislocations, which brought about crystallographic shear fracture. As the stress range was decreased, the fracture mode gradually changed from crystallographic shear fracture to gradual growth of fatigue cracks. At an intermediate stress range, as it became more difficult for a/2<110> dislocation pairs to shear ${\gamma}^{\prime}$ particles, cracks started to propagate in the matrix, avoiding the harder ${\gamma}^{\prime}$ particles. High mean stress induced creep deformation, that is, ${\gamma}^{\prime}$ particles were sheared by {111}<112> slip systems, which led to the formation of stacking faults in the precipitates. Thus, the change in fracture mechanism brought about the inversion of the S-N curves.

Influence of post-pouring joint on long-term performance of steel-concrete composite beam

  • Huang, Dunwen;Wei, Jun;Liu, Xiaochun;Zhang, Shizhuo;Chen, Tao
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.39-49
    • /
    • 2018
  • The concrete bridge decks are usually precast and in-situ assembled with steel girders with post-pouring joint in the construction practice of super-wide steel-concrete composite beam. But the difference of concrete age between the precast slabs and the post-pouring joint has been not yet considered for the long-term performance analysis of this kind composite beam. A simply supported precast-assembled T-shaped beam was taken as an example to analyze the long-term performance of steel-concrete composite beam with post-pouring joint. Based on the deformation coordination conditions of the old-new concrete deck and steel girder, a theoretical model for the long-term behavior of precast-assembled composite beam is proposed in this paper according to age-adjusted effective modulus method. Then, the feasibility of the proposed model is verified by the available test data from the Gilbert's composite beams. Parametric studies were preformed to evaluate the influences of the cross-sectional area ratio of the post-pouring joint to the whole bridge deck, as well as the difference of concrete age between the precast slabs and the post-pouring joint, on the long-term performance of the composite beam. The results indicate that the traditional method without considering the age difference would seriously underestimate the effect of creep and shrinkage of concrete bridge decks. The concrete age difference between the precast slabs and the post-pouring joint should be demonstrated for the life cycle design and long-term performance analysis of precast-assembled steel-concrete composite beams.

토사 함량에 따른 자갈 성토재료의 침하특성 분석 (The Influence of Soil Content on the Settlement Behavior of Gravel Embankement)

  • 이수형;김지호;김범준;윤찬영
    • 한국지반환경공학회 논문집
    • /
    • 제24권11호
    • /
    • pp.41-49
    • /
    • 2023
  • 본 연구에서는 토사가 혼합된 암성토 제방의 침하 특성을 분석하기 위하여 실트질 재료 혼합에 따른 토사재료의 물리적 특성을 확인하고, 토사재료 혼합 비율에 따른 자갈재료의 압축특성을 분석하였다. 이를 위하여 사질토에 실트질 재료를 혼합하여 토사재료의 압축특성을 분석하였으며, 도상자갈과 유사한 입도분포를 갖는 암성토 재료에 다양한 비율의 토사를 혼합하여 지반을 조성하고 중형챔버를 이용한 일차원 압축실험을 수행하였다. 실험결과, 혼합토사 재료의 경우 Transition Fine Content(TFC)는 하중 조건에 따라서 21~26% 범위로 나타났으며, 토사가 혼합된 암성토 재료의 경우, 자갈 시료 내 토사의 공극 채움비율이 증가함에 따라 총압축량과 크리프 압축이 모두 감소하다가 50% 혼합비 이후에는 다시 침하량이 증가하는 것으로 나타났다.

고성능 콘크리트(HPC)를 사용한 프리텐션 부재의 시간의존거동 해석 (Time-Dependent Behavior Analysis of Pre-Tensioned Members Using High-Performance Concrete(HPC))

  • 남유석;조창근;박문호
    • 콘크리트학회논문집
    • /
    • 제18권4호
    • /
    • pp.479-487
    • /
    • 2006
  • 본 연구는 고성능 콘크리트를 사용한 프리텐션 콘크리트 부재에 대한 시간의존거동해석에 관한 연구이다. 일반 콘크리트의 크리프, 건조수축 및 강재의 릴렉세이션 현상에 대한 기존의 AASHTO 방법을 수정하여, 고성능 콘크리트 부재에 대한 단계-함수법 및 시간-단계법에 의한 시간의존 해석기법을 소개하였다. 제시된 모델은 고성능 콘크리트 프리텐션 부재의 프리스트레스 손실 및 처짐에 대한 초기 및 시간의존거동 예측 값을 제공해 준다. 제안된 모델을 이용하여, 고성능 콘크리트를 사용한 프리텐션 부재의 시간의존거동에 관한 실험 결과와 비교하였다. 기존의 AASHTO 규정에 의한 시간의존 거동 예측치에 비해, 소개된 모델에 의한 고성능 콘크리트 부재의 초기 및 시간의존거동 예측결과가 실제 거동에 보다 정확한 결과를 제공해 주었다.

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

초고온가스로 헬륨 분위기에서 Alloy 617의 고온 부식 거동 (High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor)

  • 이경근;정수진;김대종;정용환;김동진
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.659-667
    • /
    • 2012
  • Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at $850^{\circ}C-950^{\circ}C$ in a helium environment containing the impurity gases $H_2$, CO, and $CH_4$, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high-temperature corrosion behavior of Alloy 617 for the VHTR application.