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Abstract

Recent results obtained for the pom-pom model and the constitutive equations with time-strain separability
are examined. The time-strain separability in viscoelastic systems is not a rule derived from fundamental
principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The
violation of separability in the short-time response just after a step strain is also well understood (Archer,
1999). In constitutive modeling, time-strain separability has been extensively employed because of its the-
oretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis
inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic anal-
ysis, we show that both differential and integral constitutive equations based on time-strain separability are
either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be
applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamard-
type instability of the Doi-Edwards model results from the time-strain separability in its formulation, and
its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and
Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side
branches like low density polyethylene, new constitutive equations called the pom-pom equations have been
derived in the integral/differential form and also in the simplified differential type by McLeish and Larson
on the basis of the reptation dynamics with simplified branch structure taken into account. In this study
mathematical stability analysis under short and high frequency wave disturbances has been performed for
these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the
integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain
history in the flow is previously given. However cautious attention has to be paid when one employs the
simplified version of the constitutive equations without arm withdrawal, since neglecting the arm with-
drawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied
constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equa-
tions exhibit severe instability that the solution possesses strong discontinuity at the moment of change of
chain dynamics mechanisms.
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have been proposed based on mathematical stability, the
Hadamard stability condition and the dissipative stability
condition (Kwon and Leonov, 1995). The first of these

1. Introduction

A rheological constitutive equation expresses the relation

between deformation history and stress. Hence in its final
form it cannot dispense with thermodynamic as well as
continuum mechanical nature however rigorously it may be
founded on the molecular physics.

A number of constitutive equations derived from either
phenomenological or molecular theories are now available,
and it is a tough task to sort among them to formulate an
appropriate model equation for a given flow problem.
Thus, it is necessary to construct some criteria on which
such a choice should be based. Two distinct conditions
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conditions is related to the rapid elastic response, whereas
the latter is associated with the dissipative viscous nature of
the constitutive equations. Both conditions express the
quality of the relation of rheological equations to the laws
of thermodynamics. In this work, we review recent results
of stability analysis performed on the constitutive models
with time-strain separability and the pom-pom model.
The time-strain separability or factorability has been ver-
ified in experiments on the stress relaxation following a
step strain, and is found to be valid especially in the long
time region. The hypothesis has been widely applied in the
formulation of rheological models and the analysis of data.
In the case of separable single integral models, the sep-
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arability assumption remarkably simplifies the theoretical
procedure to specify the functional term (the so-called
“damping function”) introduced in the stress relaxation. In
this formulation it is supposed that immediate (but arbi-
trary) generalization of the damping function to the 3D ten-
soric form is justifiable. This series of scientific process
arrives at a form, which determines the complete vis-
coelastic constitutive equation merely from the shear stress
relaxation experiment. However, the violation of the sep-
arability hypothesis in the rapid response has been
observed in a number of experiments (Einaga ef al., 1971;
Archer, 1999), and nowadays it is widely recognized that
this hypothesis is invalid in the short time region. On the
other hand, time-strain separable constitutive equations are
still extensively employed in the modeling and analysis of
viscoelastic flows, probably under the assumption that the
short-time effect is negligible in the numerical computation
and description of flow phenomena.

The theoretical simplicity afforded by the separability
hypothesis has led to its frequent use in the formulation of
rheological models. This is especially the case for integral
constitutive equations, for which only the separable for-
mulation has been employed for the description of vis-
coelastic flow. While separability can be explicitly expressed
for integral equations, its direct implementation for dif-
ferential models is not obvious. However, the equivalence
of the upper-convected Maxwell model to the integral-type
Lodge model suggests that the implicit inclusion of sep-
arability is possible for some differential models.

Recently McLeish and Larson (1998) proposed consti-
tutive equations called the pom-pom model in order to
account for complicated phenomena presumably exhibited
by long side branches present in the LDPE molecules.
They derived the equations based on reptation dynamics,
introducing a simplified geometrical molecular structure
named as a pom-pom molecule, for which the schematic
illustration is represented in Fig. 1. The original pom-pom
model is presented as a set of integral/differential equa-
tions, and due to their computational inefficiency a sim-
plified differential version is also suggested. Owing to its
theoretical and also practical importance, these model
equations draw many rheologists’ attention and quite a few
results have already been reported concerning their appli-

Fig. 1. Schematic repre'sentation of a three-armed pom-pom mol-
ecule (g =3).
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cations.

Regarding LDPE melt rheology, Rubio and Wagner
(2000) compared the theoretical computation of the pom-
pom model with experimental data, and found some qual-
itative disagreement. Inkson and coworkers (1999) also
investigated the rheological behavior of LDPE including
Melt 1, and concluded reasonable descriptive ability of the
constitutive equations (the differential version with arm
withdrawal length s. neglected for simplicity) in some tran-
sient response of simple shear and extensional flows

2. Stability analysis of the time-strain separa-
ble integral models

In this study we consider the time-strain separable form
of the Rivilin-Sawyers constitutive equation, because it
explicitly expresses the factorability hypothesis:

t
o=—p&+ [ m(t-0)[@(1,, 1)C " —@y(I1, 1) Cldr, ()]
where © is the total stress tensor, p is the pressure, 3 is the
unit tensor, m(t—t’) = t,_t , and is the relaxation mod-
ulus. C”’ and C are the total Finger and Cauchy strain ten-
sors, respectively. ¢,and ¢,, which should be specified for
each constitutive model, are functions of the basic invari-
ants I, (n=1, 2, 3) of C”, defined as

11 =trC_l, 12=trC, I3=detC_l= 1. (2)

The second and third identities represent the consequence
of fluid incompressibility.

From the class of equations described above we confine
our study to the following hyper-viscoelastic type (all the
nonhyper-viscoelastic models such as the Wagner and
Papanastasiou models are proved Hadamard unstable
(Kwon and Leonov, 1995)), which in turn becomes the K-
BKZ class of constitutive equations:

_9U _dU
¢ = allr ®, = 812, (3)

2
U

P12 = P ((Pij=§llall “)

i%4;

where U is the elastic potential. Denoting C ' as ¢, C=c’-
I,c+1,6 can be substituted into Eq. (1), giving

t
o=-p'8+ [ m(t—t) Qe+ @y(I,c—c”)+ @315 8)dY,

—eo

(=-p'8+7) (93=0) &)

t
Here p'=p+ [ m(1—1)@,1,dr’, and the term (p3zg—§] plays
—oo 3
a role in the compressible fluid flow but vanishes here in
the incompressible case. The strain tensor c¢ satisfies the
following evolution equation and the initial condition:
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Z dc—(Vv) c—c-(V»)=0
C|t=t’_6r

©)

where ¥ denotes the upper convected time derivative of c.
The constitutive equation (1) or (5) under the condition
given in Eq. (6) is combined with the following equation of
motion and the continuity equation to solve the flow prob-
lem:

P—‘V c N
Vv=0. ®

2.1, Hadamard-type stability

To verify the mathematical stability of the above con-
stitutive equations in the Hadamard sense, we first follow
the procedure employed by Kwon and Leonov (1995).
Hadamard-type stability signifies the stability of equations
(originally differential equations) under high frequency
short wave disturbances. First, assume that 7, ¢, v, and p,
are basic solutions of Egs. (5-8) in an incompressible flow
(ie., ¢;=0 and L;=1), and then upon these variables we
impose the following short wave disturbance with high fre-
quency:

itk-x—ot)

{T,C,V,P,} = {TO’CO9v0’p0}+8{T:E’;>I;}exp': 2 :|
€ ©

Here {:t,E,;, p} are the amplitudes of the corresponding
variables, k is the wave vector, x is the position vector, ®
is the angular velocity, and € is a small amplitude parameter
(lg«1) that also accounts for the high frequency and short
wavelength of the applied disturbance.

Substitution of Eq. (9) into Egs. (5)-(8) yields

szv _v,kv,,k fm(t )B;; (10)

ip ‘1

where details of the derivation can be found in the ref-
erence (Kwon and Leonov, 1995) and

Vi=vy (v the complex conjugate of v) (11)
Biqu 5zpch+(p2(1 ipCig 5,,, 'j0CjsCsq—CipCiq T Cyj Cpq)
+2(pllcl_] pq+2(p12[(llc i~—Ci Csj)c +clj(]1 Cpxqu)]
+2(pZZ(IICtj_Clxcsj)(llcpq_cps xq)
(12)

The necessary and sufficient condition for stability there-
fore becomes

B =B, v kvk,>0. (13)

ijpq

If we confine the analysis to the real plane, the inequality
(18) can be rewritten as
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B = By, vikvok,>0. (14)

ijpq
To obtain the simplest necessary condition for stability,

we assume the following asymptotic dependence of the
potential:

U=a(JT))" (A/I—z) as I, > ((}, o.i/U_ (;’u af—zg/—)
(and then I,—oo, a>0). (15)

In the asymptotic limit shown in Eq. (15), the derivatives of
the potential become

Pr=aa J1)* (L) @=aB( /) (B
Pn=aca- 1)) (D)’ Pu~aaB( )™ (JL)*!

Pn=~aP(B-V)(JI) L) 16)

Then the inequality B >0 is in turn written as

a(«/fl)a_4(A/72)ﬁ[cvvckk_Czk+ Czk"' CraCnt (00— l)C\%k

-B (%) vkcvk}ﬁ([ YD N + (e~ (e,

+<c;;)(c;,',)+(ﬁ_1)(c;,:)2_a( [) cucil>
17

To obtain the simplest necessary condition for the Had-
amard-type stability, we hereafter consider only the case of
simple shear flow. In this case the Finger tensor ¢ and its
inverse ¢ are expressed in terms of the shear strain 7 as
follows:

1+ yo |1 v O
[e]= V4 1 o [c1= -y 1 +;}
0 01 0 0 1
I, =1,=y+3=I. (18)

Again, B >0 becomes

oD+ PP+ 14 14 (o= 1P+ B
+BCD T L+ 14 P =P+ 1+(B=1)¥ +ay1>0.

Eventually we obtain
(a+[)‘)|_3+(a+ﬁ—1);7j>0. (19)

Inequality (19) thus yields a+ 8> 1 as the simplest nec-
essary condition for a stable constitutive equation.

The analysis can also be performed with respect to the
damping function /(7). Consider a step shear experiment in
which the shear stress is expressed as

7% 1) = (NG, (20)

G(?) is the relaxation modulus. In the perfect elastic limit
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(i.e., when t > 0 +),

T2(9) = Y(NG(0)= Y(PEG.- 2D

Here G; is the constant modulus of the i-th Maxwellian
spring in multimode representation. For stability, 7j; or
(9 should be monotonically increasing with respect to ¥
(Simhambhatla, 1994). In conjunction with our analysis,
we again assume the following asymptotic dependence:

2= K‘VHI

leading to the following criterion for stability

h(P=xy' or

as y—>oo

drlz

~(,u+1)r<)/'>0 (22)

Thus u must be greater than -1 for stability. In the case of
the K-BKZ equation (or hyper-viscoelasticity),

0+ Q= h(P) (23)
From Egs. (15) and (16), we have
o )~ LB [ 37y

2f N AREN Jl_z 2.J7+3
(24)

Asymptotically, the following relation among ¢, B and p
can be shown:

UL yei2e oyt = = v+ B2 (25)

Because y > -1 for stability, this again results in oc+ > 1,
which exactly coincides with the condition in Eq. (19).

2.2. Criterion I of dissipative stability: Integral
model
In terms of a thermodynamical description, basic func-
tionals such as the free energy F, extra stress 7 and dis-
sipation D for the hyper-viscoelastic separable integral
models are of the form (Kwon and Leonov, 1994):

t
F= [ m(t—t)U(l, Ipt,0')dt

—co

t
T= jm(t—t')c-%g(ll,lz;t,f)dl'

= (1 e)—d—E ]MU(II,IZJ dr' . (26)

Here e = l(Vv+VvT) is the strain rate tensor. Another sta-
bility theorem called the “dissipative stability criterion I”
has been proven by Kwon and Leonov (1994). This the-
orem relates stability to the boundedness of the stress (or
other variables such as the free energy and dissipation

36

functionals) in any regular pre-defined time-dependent
flow, and is rewritten below.

Criterion I of dissipative stability (single integral separable
models)

In any regular flow, the functionals of free energy and dis-
sipation (26) are bounded if and only if the thermody-
namically or Hadamard stable potential function, U (H,,
H,, H;) expressed in terms of the principal Hencky strains,
H,, increases more slowly than exponentially.

In the above theorem the principal Hencky strain mea-
sure H,; and the Finger strain c; are related by

=1
H = 2ln - 27

From the result obtained in the previous section, the Had-
amard stable constitutive equation is expressed in the
asymptotic limit as

Uza(ﬁ)“(ﬁ)ﬁ and a+ fB>1 as I, e or Lo

2H, 2H, B
2 3
+e

= IA]:a(A/eZHl + 62H2+eZHS)m(A/e42H1 +e ) (28)
where from incompressibility H,+H,+H;=0. It is clear
from expression (28) that the elastic potential U under the
stability constraint a+f>1 increases at the speed of an
exponential function (or faster) in terms of the Hencky
strain, as illustrated below.

Without loss of generality, we may assume

H —o as [j(or L))—eo.

Then
~ oH 2(H +H) 2(H THy B (a+/3)H 3H, 2H, B
U=aqe ! e e 2) = 1( e 2+€ 3)
B8 B B oy otf
(x+B)H, ~ H) H H
>2%ae e?'=2%e" e? |, as H —oo. (29)

Since the Hadamard-type stability condition states that
a+f>1, and the Baker-Ericksen inequality (Truesdell and
Noll, 1992) requires that =0 and $20 for evolutionarity,
the Hadamard stable potential U always increases expo-
nentially or faster in terms of the Hencky strain measure.
Hence the following conclusion can be drawn:

The time-strain separable single integral constitutive equa-
tions for viscoelastic fluids that are Hadamard type stable
are always dissipative unstable. In other words, the time-
strain separable single integral models are ill-posed either
in the Hadamard or in the dissipative sense.

One example of an instability incurred by the hypothesis
of time-strain separability is illustrated in Fig. 2, drawn
according to the damping function derived by Wagner and
Meissner (1980) on the basis of experimental data (Laun,
1978). Because (y) is directly proportional to the shear
stress, the decreasing branch of the curve after the max-
imum is Hadamard unstable, proven previously (Simham-
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—— h(y)=.57exp(-.31y)+.43exp(~. 106y)

0.0 T T T
0 10 20 30

Shear Strain, y

Fig. 2. Behavior of the damping function for the Wagner model
[Wagner and Meissner (1980)] in stress relaxation fol-
lowing step shear.

bhatla, 1994; Leonov, 1999). It can therefore be conjec-
tured that the material itself shows this kind of instability
right after the large step shear, because the experimental
points display the same decreasing response after the max-
imum. However, this decrease in the experimental points is
an artifact induced by the hypothetical time-strain sepa-
rability, because in the short time region (i.e., immediately
after step strain) the experimental behavior definitely devi-
ates (and should deviate if there exists no phase change)
from the master curve created under the hypothesis (Einaga
et al., 1971). Consequently, all the separable constitutive
equations that can appropriately describe the behavior of
stress relaxation (except in the short time region) seem to
violate the Hadamard stability condition, because they
show behavior qualitatively similar to the curve depicted in
Fig. 1 (Simhambhatla, 1994).

A similar argument may be applied to the Doi-Edwards
constitutive equation. In this section, the analysis has been
carried out for the kernel in Eq. (1), i.e., the function
(except m(r—r)) inside the integral dependent upon the
Finger strain ¢ or C', but the direct application of the cur-
rent result to the Doi-Edwards model is not possible since
the model equations are represented in terms of the so-
called geometric universal tensor @ (Doi and Edwards,
1986). However, Q is related to C™" at least implicitly
through some evolution equation imposed on the defor-
mation gradient E and its configurational space averaging;
thus the conclusion drawn above regarding the stability of
constitutive equations can be applied to the original Doi-
Edwards model with the independent alignment approx-
imation. The instability shown in this model, which has
been demonstrated previously (Kwon, 1999), possibly
results from the time-strain separability present in the
model equation. This irrelevance of the Doi-Edwards
model in the short time response upon large strain may be
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closely associated with the fact that the short time behav-
ior follows the Rouse relaxation mechanism even in the
reptation theory (one can find detailed discussion in the
paper by Archer (1999)).

3.Remark on differential models with separa-
bility in the stress relaxation

The dissipative stability criterion I for the Maxwell-like
differential constitutive equations, which is equivalent to
the criterion mentioned in the previous section, was proved
by Leonov (1992). This criterion is formulated as follows.

Criterion I of dissipative stability (Maxwell-like differential
models)

Consider the set of upper convected Maxwell-like models
with positive dissipation D. Let the free energy F be a non-
decreasing smooth function of invariants /.. If for any pos-
itive number, E, the asymptotic inequality

D>E-|a) as || > (b=(tr b))

holds, then in any regular flow the configuration tensor ¢
and the stress tensor ¢, are bounded.

In the above theorem, 6,=Gc, G is the constant modulus,
the invariants I, are defined as

I=tr c, 12=%(I%—tr cz),

and all other definitions can be found in the reference
(Kwon and Leonov, 1995).

Because the differential constitutive equations cannot
express the time-strain separability explicitly, in the present
analysis we consider only the case of stress relaxation
where its explicit representation is possible. In the stress
relaxation after some arbitrary step strain or after cessation
of any flow field at =0, the following equations hold

v=0, and Vy =0 at >0.

Using these equations, the Johnson-Segalman, upper-con-
vected Maxwell and White-Metzner models (the differ-
ential models that are time-strain separable at least in stress
relaxation) become

‘r+ér=0, 7=G(c—9) (30)

be readily solved, resulting in the solution 7= gexp L,
where 7,=17(t=0) is constant. The dissipation an
magnitude of the stress for these models are

where 0 is the relaxation time. This differential equatiog c;zn
the

D=2£9(11—3), o) =Gle|=G(13-21,) "> . a1

Hence, the criterion I is violated when j¢|— (Leonov,
1992). This explains the consequence that the Johnson-
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Segalman, upper-convected Maxwell and White-Metzner
models all exhibit an unbounded stress response in uniaxial
elongational flow when the extensional strain rate exceeds
a certain limit (e.g., for the upper-convected Maxwell
model the critical strain rate is half of the reciprocal relax-
ation time). We can also conclude that the dissipative
unstable behavior of these constitutive equations occurs
due to the time-strain separability (in stress relaxation)
inherent in their mathematical form.

The separability 7= texp(-#/6) in the stress relaxation
of the differential equations originates from the linearity of
the dissipative term (the term containing the relaxation
time in Eq. (30)) with respect to the stress 7. Hence, stable
constitutive modeling requires some complicated func-
tional form for the dissipative term rather than a linear
function of the stress. It is also worth mentioning that the
Johnson-Segalman and White-Metzner models are also
Hadamard unstable.

Formulation of integral viscoelastic models that pre-
serves both stability requirements necessitates consider-
ation of a general functional form (Truesdell and Noll,
1992), rather than Eq. (1). Little work has been done in this
area of viscoelastic flow analysis, however, probably due to
the mathematical complexity or ambiguity of such func-
tional forms. In a practical sense, the differential type with
nonlinear dissipative terms surpasses the integral form
because previous results show that 3 differential equations
are globally stable, whereas no integral models are stable
(Kwon and Leonov, 1995). In addition to the models pre-
sented above, there also exists a mixed-type formulation of
non-separable integral/differential constitutive equations,
referred to as the “pom-pom model” (McLeish and Larson,
1998), of which the mathematical stability is discussed in
the following.

4. Analysis of the pom-pom model

The pom-pom constitutive equations for polymer mol-
ecules with long side branches and more than one branch
points are derived on the basis of the reptation dynamics
under the assumption that a melt consists of identical mol-
ecules with a very simplified branching structure, called
pom-pom molecules (McLeish and Larson, 1998). A typ-
ical pom-pom molecule illustrated in Fig. 1 is composed of
two identical g-armed stars connected by a backbone sec-
tion that pursues hypothetical reptational motion. By
Mcl.eish and Larson, the dynamics of this pom-pom mol-
ecule is suggested as the simplest analog of the motion of
the real polymeric molecule with long branching like
LDPE.

The original pom-pom model is suggested as the fol-
lowing complicated integral/differential constitutive equa-
tions that include various variables and parameters in order
to take into account molecular geometry such as branch

38

and backbone structures and its time evolution.
The stress representation:

o=pd+ G(/'L +L_2as

— Sh
2L )s, G=12Gu0h 0,

2gs,+s,

(32)

Here o is the total stress tensor, & the unit tensor, p the iso-

- tropic pressure, S the orientation tensor, G, the plateau

modulus, ¢, the fraction of molecular weight contained in
the crossbar (backbone), g the number of arms in one of
two branches that also corresponds to the maximum stretch
ratio of the backbone, and s, and s, are dimensionless
molecular weights of the backbone and arm, respectively,
scaled by the entanglement molecular weight. s, explains
the dimensionless length of the arm withdrawn into the
backbone tube, A is the stretch ratio of the backbone under
the flow field (Fig. 1), and thus both are functions of time.
Backbone orientation:

S=L. pfexe(, 720 Jo'ar

dE_ o 1
E—Vv -E (33)

A _ u'u'
0 <—(u,)2>0,
u=E(t-t)u,

In these equations, the strain measure Q" is slightly mod-
ified from the original one to a universal strain of the Doi-
Edwards model with independent alignment approximation
that has been employed by Rubio and Wagner (2000) in
their study. is the relaxation time of backbone orientation,
u the unit vector, E the deformation gradient tensor, v the
velocity, V the gradient operator, Vv the transpose of the
velocity gradient, and the symbo!l ( ), is the operation of
averaging over the configuration space.
Backbone stretch:

dl_/lV §—= (/”t 1) for A<gq. (34)

Here 7, is the characteristic time of backbone stretch. The
above equation is valid only for A<g and even if Eq.(34)
still expresses the increase of A after it reaches the value g,
A is fixed at the value of g and the following evolution
equation of arm withdrawal starts to act.

Arm withdrawal:

= (a5 " (35)
Here 7, is the characteristic time of arm relaxation.
Characteristic time for backbone orientation:

= %231%%7-}61 . (36)

Characteristic time for arm relaxation:
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2 3
pﬁ{u_gw)&%ﬂ =5 @

Characteristic time for backbone stretch:

= SbTa(O)q . (38)

In the preceding equations for characteristic times, 7, and
T, are dependent upon s, and thus are functions of time, but
7, is constant.

Due to computational inefficiency as well as complexity
of the double integral in the above model equations,
McLeish and Larson have proposed rather simple differ-
ential version of the pom-pom model. Hence in the dif-
ferential pom-pom constitutive equations, the following
evolution equation substitutes Eqgs.(33) of backbone ori-
entation:

c+lc—8=0 s="- (39)
T, tr ¢

Here ¢=%_vy".c—c-Vy is the upper-convected time
derivative Of the configuration tensor ¢, and all the other
equations from (32) to (38) except (33) are kept for the
complete set. Note that the evolution equation (39) for the
configuration tensor is exactly the same with the evolution
equation for the upper-convected Maxwell model in the
configuration tensor representation (see for example, the
paper by Kwon and Leonov (1995)).

4.1. Stability analysis of the differential model

The Hadamard stability accounts for the elastic proper-
ties of viscoelastic constitutive equations related to fast
responses such as type of differential operator and elastic
free energy (Kwon and Leonov, 1995). Also it is often
interpreted as the viscoelastic change of type. In any case,
no matter what it means, unstable equations in Hadamard
sense should be understood as non-physical formulation of
viscoelastic phenomena and discarded from the further
application for viscoelastic flow analysis.

Total set of equations for the isothermal incompressible
viscoelastic flow is composed of following equations of
motion and continuity in addition to the constitutive equa-
tions. Upon the total set of equations, we impose such short
and high frequency wave disturbances as

{O',S,C,V, /l’pv sc} = {007 SO""O? Vo, 2'05p05 SCO}
+{60, 688, 3¢, Ov, 64, 8p, 6s..} ,

explitk-x—wn)/€]. (40)
Here {0-0’50700’ Yo, lo,l’o, SCO} and {50'3 6S’ &: 51’, 62" 5[’7 5sc}
are basic solutions and applied disturbances of the cor-

responding variables, respectively, and from now on we
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remove the subscript 0 in the basic solutions for conve-
nience of notation. {G,S,E,fi,i, ;A;, 5.} is the amplitude of
disturbing wave, k the wave vector, the frequency and € is
the small amplitude parameter that also expresses the short
wavelength as well as high frequency of the disturbing
wave. b

We divide the complete analysis into three parts. First
part is the stability analysis in the flow regime of A<gq,
where s, always becomes identically zero and Eq.(35) does
not play any role. In this case, the relaxation time 17, is con-
stant and in the perturbed system (40) s, is absent. The
second and third parts of analysis consist in the region of
A =g, hence the backbone stretch ratio A is constant, o4
vanishes, and Eq.(35) starts to react in the set of perturbed
equations. For the simplest analysis, in the second part we
neglect the contribution of the arm withdrawal length s,
and such a simplified set of the pom-pom constitutive
equations has already been employed by Inkson and
coworkers (1999) in order to describe the rheological
behavior of low density polyethylene melt. However in the
third part, we accomplish the complete analysis of stability
including the s, variation for A=¢q.

4.1.1. Hadamard stability analysis when A=gq

Since s, and its perturbation vanish, we disturb Egs.(32),
(34), (38) and continuity and momentum equations accord-
ing to Eq.(40):

pQZ;/j(/j = GAQSijSmn;i;jkmkn
= p& =GNS,,kk, (41)

Here Q2=w —k-v is the frequency with Dopplers shift on
the basic flow field v. Since the frequency w and thus £2
should be real-valued for stability, the necessary and suf-
ficient condition of the Hadamard stability becomes

GA’S, ke, >0, (42)

which exactly requires the positive definiteness of the sec-
ond rank tensor S. Due to the relation (39), the positive def-
initeness of § is equivalent to that of c.

Regarding the positive definiteness of the configuration
tensor ¢, Hulsen (1990) and Leonov (1992) independently
proved one theorem in some limited flow situation. In that
theorem, it is stated that for any given piecewise smooth
strain history with the initial condition ¢ = 8 the principal
values of tensor ¢ are positive. Hence we can conclude
that in the flow regime of A<gqthe pom-pom constitutive
equations are Hadamard stable as long as the tensor ¢ is
positive definite, i.e., when the smooth strain history is
predefined. However it is worth mentioning that in some
given stress history the constitutive equations with special
type of steady flow curves are proved to violate the pos-
itive definiteness of the tensor ¢ (Kwon and Leonov,
1992).
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4.1.2. Hadamard stability analysis when A=q (s,
neglected)

When the backbone reaches its maximum stretch, A
becomes a constant g, and thus its disturbance vanishes.
Therefore substitution of 0 for 4 yield the following dis-
persion relation and the stability condition:

PV = GG (8 mn= 2SS Vivikoks

1 2 e
= qu(l—I 5,-,,,cj,,—l—lzc,~jcm,,)v,~kjvmkn . (43)
This specific problem of stability is equivalent to the
problem for the constitutive equations in a sort of general

Finger form such that

v
c+l(c—5):0, g2FEU=qzln1,, I=trc,
T, G

oU
o= Glge+pullic -+ 98t =—pd+Ga's . =51,
J

I =tre, 12=%(1%—trc2), Iy=detc. (44)

Here F (or U) is the (dimensionless) elastic free energy,
i.e., the Helmholtz free energy corresponding to the
pom-pom model for this specific case. According to
above equations, for this constitutive model the follow-
ing holds

2 2
(P1=g" 0 =0;=0, (Pn:—qi’ Or=0y=0n=0,
I g (45)
2
where ¢, = (;915 If one substitutes Egs.(45) into the fol-
i

lowing inequality (46) obtained in reference (Kwon 1994),
one can immediately find that it results in the condition
(43):
B = B, vikvuk,
= [(pl 6imcjn + (pZ(Il aimcjn_ (Sirircjacan_cimcjn + cijcmn)
+2011CCmn + 20120511 Co = CruaC o) + 2021 (11 Cj= Ci0C o) Crun
+205(11¢—CiaC o) 1 Cn—Cop Cp) 1Vikpmk, >0 . (46)

After rewriting the constitutive relation as Eqs.(44), we
may directly apply the following necessary and sufficient
condition for Hadamard stability proved in the paper
(Kwon and Leonov, 1995):

@ B>0,

(i) w+2B.Jcici >0 (i#j2k),

(i) {(wi+2B.Jeic0)+(w+ 2B feen) Y >wi-2Bfe;
(i#j#k), “7n

where ¢; is the eigenvalue of the tensor ¢ and
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Bi= o1+
w; = (L1 —c) i+ 2320 —c}-2I/c){ @11+ (Qio+ @51 )i+ PP }
(43)

Hence for this problem, f; = ¢, irrespective of the value of
subscript #, and w; = (I;-¢)@,+2(I3-2L,—c?-2I/c) ¢, . In
order to demonstrate the instability of these constitutive
equations, we here consider the case of simple shear flow,
where the principal values and invariants of tensor ¢ valid
at the moment of step strain ¥ become

ci=c, =1, 3=1, c=(F+2+J7 +47)/2,

L=hL=9y+3. (49)

Then the second inequality in (47) for i=1 reduces to

J(P+3) P +3-¢)-2Jc(¥ +47 +3-"=2/c) +2(¥ +3)>0,
(50

which is always satisfied for all values of ¥ However for
i=2 or 3 it restricts the value of ¢ or ¥ by

(P+3)(F+3-1/0)=2(V +4V +3-2c-1/)+2.Jc(Y +3)>0
and —y'-7+12>0. (51)

The latter of inequalities (51) yields the most rigorous con-
straint such as y<./3 for stability. Hence we conclude that
the pom-pom constitutive equations for A= q are Had-
amard unstable when the instantaneous shear strain
exceeds \[3, if we neglect the variable s.. Also it is highly
probable for the results obtained in the paper by Inkson et
al. (1999) to be located in the unstable solution branch
when the strain rate is high.

4.1.3. complete Hadamard stability analysis when
A=gq

In order to study the stability characteristics of the model
equations in their full description, now we have to consider
the disturbance of s., and thus the relaxation times 7, and
T, are also perturbed, while A is fixed. The stress relation
and the evolution equation for arm withdrawal under the
disturbance yield the following final form

PP, = Gq(q+ 22—;)(6,,.Smn—s,.msjn)G,-G,-kmkn , (52)

which has to be positive for stability. In the tensor ¢ rep-
resentation, due to positivity of G, g, s., s, and I,, the ine-
quality imposed on (24) can be rewritten as

- Comn_ CimCin \© °
(5,, R—? )v,v,k,,,k,,>0

:(iaimcjn— I%L/zc,.jcm);,-k,.amkn>o . (53)

I

This condition of stability coincides with the case of
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o= 1//\/1_1 , ou=-1/Q21?) and @,= @, = @ = @, =0 for
the preceding inequality (46). Then corresponding poten-
tial equivalent for the constitutive equations in this par-
ticular stability problem becomes

U=2/I. | (54)

At this point, we can apply the Renardy’s stability con-
dition (1985) that for the K-BKZ class of constitutive equa-
tions the convexity of the thermodynamic potential U in
terms of invariants /7, and /T, is the sufficient condition
for stability, and it has been verified that Renardys con-
dition is also sufficient for Hadamard stability when it is
applied to differential Maxwell-like models with an upper
convected derivative (Kwon, 1994).

Since the equivalent potential (54) clearly satisfies the
Renardys condition, we can finally conclude that in the
flow regime of A=q the pom-pom constitutive equations
are Hadamard stable as long as the tensor ¢ is positive def-
inite.

4.1.4. dissipative instability in creep shear flow

According to the preceding results on stability in this
work, the differential pom-pom constitutive equations
are globally Hadamard stable (stable in Hadamard
sense in any type of flow and in any value of velocity
gradient tensor) except for the case of A =g with s,
neglected, as long as the configuration tensor ¢ is pos-
itive definite. Now we discuss the extreme flow situ-
ation where possibly the positive definiteness can be
violated or another type of instability rather than Had-
amard-type can occur.

In the steady state of simple shear flow, the constitutive
equations (32), (34) and (39) reduce to

011=1+2F2, cn=I, cp=cyu=1, cy=cn=0,

I
; (A<g),

T 1—-2 ~1 ~ 5
A=|1-————| | op=0,/G=4
{ Tb(0)3+2r2:| e 3

where the dimensionless shear rate is defined as I'= 1,(0)
¥ and 7,(0) is the value of 7, at x =5, =0. From the above
equations the ratio between the relaxation times 7,(0)/7;
should exceed the value of 1/2 to avoid singularity. In Fig.
3, the behavior between the dimensionless variables I'" and
o1, is shown for several values of 7,(0)/7,, and all the
curves are valid when ¢>2, since for those values of
7,(0)/7, A never exceeds 2. All show maxima and then
decreasing branches of solution, and the achievable shear
stresses are all bounded below the maximum. Here we can
directly apply the theorem derived in the paper (Kwon and
Leonov, 1995) that asserts so called dissipative instability.
It is evident first that mechanically and thermodynamically,
the decreasing branch of the flow curve in Fig.2 is the
unstable solution. Another type of severe blow-up insta-
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7,(0)/1 =1

1,(0)/7,=2

0.1 1

6,,/C

1,(0)/1;=3.242
0.01 1

T

Fig. 3. The dimensionless shear stress 01/G vs. dimensionless
shear rate I'in steady simple shear flow of the differential
pom-pom constitutive equations for various values of the
ratio between relaxation times.

bility exhibited by the dissipative unstable constitutive
models has been exposed in reference (Kwon and Leonov,
1992), where the violation of the positive definiteness of
¢ is also demonstrated. In this analysis, we consider the
flow situation described below in order to demonstrate
instability.

In the following simple shear flow after constant step
stress O, applied at £=0:

G2 = GOH(1) , (56)
initial values of A and S), become

A= A(t=0)=(Ey-ul)y Ov=012(1=0)=A3S,,

(co)1n
Se=S,,(t=0)=———
0=51,(1=0) o) +2
1%0 1+% %0
Ec=1010], c=EEf=| % 10]. (57)
001 0 01

Here H() is the Heaviside function and 7 is the initial
step strain in this creep flow to be determined from the
second of Eqs.(57). Above equations are again valid
only in the case of 4 < ¢, and when A achieves the value
of g, the stress relation for initial values is uncertain
whether s, is zero or nonzero. Due to this ambiguity, we
here take into account only the case of initial stretch
less than gq.

In this type of flow, the evolution and stress equations
reduce to
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gl ATS,,— f”(o)(/l 1), 6y=0,/G=AS, when A<q,
?2‘(2“”“)F Su-gagye or=(d 2

when A=gq,

‘9C“—2r Cipt 2 )(c“—l) 0, ac”—rzz Tbg))cn_o
cp=cp=1, cj3=c;=0,

S, _"_+L§’ I'=1,00)¥, ;ZFEO_) (58)

In the above stress relation, &,, is fixed at the value of o,
in this creep experiment, and it imposes following con-
straints:

dO'lz

=2 A(Z. S1,)=0 when A<gq,
dt
300
(@
200
)
100
0 : . .
0.0 0.4 0.8 12
A
t
80
(©
60 |
-
40
20 |
0 . . .
00 04 0.8 12 16
A
t

doy, _ d ( ) _
—= = +2 S =q.
7 dt|: q +2q= 12} 0 when A=¢ (59)

Hence they finally yield

7,(0 1
= ﬁ[z%)@—ﬂ(ql +2)+3} when A<gq,
_ 7,0) Cio [%(0) gs,

(c“+2)+3} when A=gq.
(60)

The result of computation according to Eqs.(58) and (60)
is illustrated in Fig. 4 for ¢=3, 5,=5, 5,=20 and
oy =20, , where o, denotes the maximum value of
dimensionless shear stress in steady flow curve. All the
solutions except S|, manifest rapid increase with respect to
time. When the dimensionless time approaches the value of
1.267, the stretch ratio A becomes close to its maximum
admissible value g. When A attains the value g, the com-

T e +2—ch| T gsy+2s,

(b)

3
O
8 4
4 4
0 ‘ . ,
0.0 0.4 08 12
A
t
03
(d
02
o
(7]
0.1
0.0 :
0.0 0.4 08 12
AN
t

Fig. 4. The behavior of the pom-pom model in creep simple shear flow when applied stress is twice of the maximum achievable stress

in steady flow curve (@ ¢;,. b cip. ¢ I d S),.).
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putation regime for shear rate changes from the first to the
second of Egs.(60). However, this model ceases to have
physically meaningful solution from this time on, since the
shear rate I" exhibits strong discontinuity from the value 69
to 369. In Egs.(60), one can easily observe such incom-
patibility that exists between the first and the second equa-
tions, if one assumes continuity of other variables such as
¢y and ¢, at A=g. Due to this solution jump, we cannot
obtain solutions after that instant. This kind of ill-posed
behavior occurs for the pom-pom model in creep flow
where the stress history is assigned, whereas it may not be
observed when strain history is specified.

4.2. Stability analysis of the integral/differential
model
In this section, we consider the Hadamard-type stability
for the original set of Eqs.(32)-(38). By the same way, we
apply the following infinitesimal disturbance on the basic
solution:

{O',S, QlA,E, V, )N,P,Sc} = {0-07 SO’ Q(I)AaEOa v05 2'O’pONS‘cO}
+{60,88,60™ 6E, v, 62, 6p,8s.}

156,58, 50", 6E, 6,6, 6p, 85} = £{3,8,0" .9, 4, p, 5.}
X exp [itk-x-t)/€]. (61)

Here 8Q™ and OF are added instead of &5 of Eqs.(40) and
from now on we also remove the subscript 0 in the basic
solutions.

We carry out the analysis in two folds this time. First is
the stability analysis in the flow regime of A < ¢. The sec-
ond part of analysis consists in the region of A= g, and we
neglect the contribution of s.. However for this integral/dif-
ferential constitutive equations, the complete analysis in
the region of A = ¢ with s, included has not been performed
due to their complexity. Hence in the following analyses,
the disturbance imposed on the arm withdrawal length
always vanishes, that is, ds,=0 in Egs.(61).

4.2.1. Hadamard stability analysis when A <gq

The linear perturbation imposed on Eqgs.(33) finally
yields the resultant inequality for stability in the form of

pQZ\;z = Gﬂ,z{z%r_w exp(—%)(eieﬁodtl
b b

not known to authors, we confine the study to following
simple situation.

In the case of stress relaxation after some arbltrary step
strain, the tensor E and vector e become

— 0y .= t, <0
= (Eo-8)H(-1)+8, ¢,= IE RESGE

U; t1>07

(63)

where ¢! and Ej=(E,), are constant vector and tensor
components, respectively. Then the inequality (62) results
in

sz{;Z = Glz{%&mtsjn+exp(~%))(5,m i 55,,"5],, ZHW,,,)

+ 2exp(—%)hijhmn};ikj;mkn >0,
hjn = <€P€2>0, Hijmn (eoeoe O>O (64)

Right at the moment of strain imposition, i.e., when t—0 +,
this inequality is simplified to

PV = GAX(8,hyy=2H g+ 2P Viki Uk, >0 (65)

If we apply the same procedure employed in paper (Kwon,
1999), the following necessary conditions of stability under
1D and 2D disturbances can be derived:

1D disturbance: h;—2H,;;+2h%>0

2D disturbance:

O TR IR (S
+(x2-4+l)ﬂ...}+(h.._h..)2+2(x—1)(h..h. 1)
2 i~ 1 5 NNty
1 2
+(x——j h}>0
X

for —co<x<o (no sum on i and j). (66)

Even though the general analysis of the above simplified
stability conditions cannot be achieved, it has been verified
that in simple shear flow both inequalities in Eq.(66) are
always satisfied.

4.2.2. Hadamard stability analysis when A=g¢q

—j’_we p( )(e e,,)odt2+5,m Lw exp(——)(e e,qdt (s. neglected) X
In this case, again 64 = A =0. When the variation of s is
| o neglected, the resultant stability condition equivalent to

_2? [ ex ( )(e €€meodt }vikjvmk,,>0 . (62) Eq.(62) becomes
b

u o PQZ‘A’Z = qu%l‘J:w eXP(—t—;‘t‘]){ Oimlejenro—2(eiejemen)odt; X

Here ¢, = Einttn gng 3= vv;. Since the complete analysis o b b
to yield thle neéessary and sufficient condition of stability is VikjVimk, >0 . 67)
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Now this condition of Hadamard-type stability for the
pom-pom model exactly coincides with that for the Doi-
Edwards model, i.e., Egs.(5) and (6) in paper (Kwon,
1999). That is, in stress relaxation after arbitrary step
strain, inequality (67) again results in

pary’ = GqQ{éé.-ma,-nu—e"”%+<dmh,,,—2H,-,-m)e”””}

X Vikivik,>0 ,

and at the moment of strain imposition reduces to the fol-
lowing condition, the upper bound for stability:

(aimhjn_zHljmn){;fkj;mkn>0 s (68)

which precisely corresponds to Eq.(7) with (9) in the ref-
erence (Kwon, 1999). Therefore we may draw a same con-
clusion that the pom-pom constitutive equations are
Hadamard-type unstable in the maximum backbone stretch
with s, neglected.

5. Conclusion

In this paper, we examined recent results of mathematical
stability for viscoelastic constitutive equations. Employing
an asymptotic analysis, we have verified that the time-
strain separability implemented in viscoelastic models is
the main origin of mathematically ill-posed behavior in
these models. In this analysis, the commonly used differ-
ential and integral constitutive equations involving sepa-
rability are proven either Hadamard-type unstable or
dissipative unstable. The hypothesis of time-strain sepa-
rability is shown to cause the Hadamard-type instability of
the Wagner, Luo-Tanner, Papanastasiou and K-BKZ mod-
els with Larson-Monroe or Mooney potential, and the dis-
sipative instability of the Lodge model. The implicit
relation between the Finger strain C”' and the geometric
tensor Q (through the evolution equation of a deformation
gradient tensor E), allows the same conclusion to be drawn
for the Doi-Edwards model. Hence, the Hadamard-type
instability of the Doi-Edwards model has its origin in the
time-strain separability in its formulation. Regarding the
pom-pom constitutive equations, it is proved that the dif-
ferential version with its full description is globally Had-
amard stable, as long as the orientation tensor S or ¢
remains positive definite, in other words when the smooth
strain history is pre-defined. For both differential and inte-
gral/differential types Hadamard instability occurs in the
case of maximum backbone stretch with arm withdrawal s,
neglected. In the sense of dissipative stability, the differ-
ential model is also unstable, since the steady shear flow
curves exhibit non-monotonic dependence on shear rate.
Additionally in the flow regime of creep shear flow where
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the applied constant shear stress exceeds the maximum
achievable value in the steady flow curves, the constitutive
equations exhibit strong discontinuity of solutions that pro-
hibits further continuation of stable computation along
time axis.
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