• Title/Summary/Keyword: Crack bridging model

Search Result 29, Processing Time 0.16 seconds

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포 (Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링 (An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해서 II. Bridging 효과를 고려한 Double cantilever Beam 분석방법의 정립 (Analysis of Bridging Stress Effect of Polycrystalline Aluminas Using Double Cantilever Beam Method II. Development of Double Cantilever Beam Method Considering Bridging Effect)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.590-601
    • /
    • 1996
  • This study aims at developing the double cantilever beam (DCB) method in order to calculate the bridging stress distribution in polycrystalline aluminas with different grain sizes. In the already existing DCB methods the measured crack opening displacement (COD) in coarse-grained aluminas deviates generally from the calcula-ted one because of the grain-interface bridging in the crack wake. In the current DBC method developed in the present study the effect of the bridging stress was considered in the DCB analysis. whereas the only effect of applied point-loading at the end of DCB specimen was taken into account in the existing DCB analysis The crack closure due to bridging stress was calculated using the power-law relation and the theoretical model developed in Part I of the present paper as bridging stress function and then compared analytically. The limitations of the current DCB methods such as specimen dimensions applied loads and elastic modulus were discussed in detail to provide a reliability of the newly developed DCB analysis for the bridging stress distribu-tion in polycrystalline aluminas.

  • PDF

치아 계면 층 DEJ(Dental Enamel Junction)의 파괴 거동에 관한 수치해석적 연구 (A Study on the Fracture Behavior of Tooth Interfacial Layer, DEJ (Dental Enamel Junction))

  • 다네사와 미시라;유승현;정웅락
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.284-291
    • /
    • 2011
  • Numerical experiments on biological interfacial layer, DEJ by finite element software ABAQUS have been conducted to study its fracture behavior including crack bridging / arresting characteristics in the model. Crack growth simulation has been carried out by numerical tool, XFEM, devoted to study cracks and discontinuities. The fracture toughness of DEJ has been estimated before and after crack bridging. The implications of bridging in numerical study of fracture behavior of DEJ-like biological interface have been discussed. It has been observed that the results provided by the numerical studies without proper accommodation of bridging phenomenon can mislead. This study can be helpful for understanding the DEJ-like biological interface in terms of its fracture toughness, an important material characteristics. This property of the material is an important measure that has to be taken care during design and manufacturing processes.

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

유한요소법에 의한 콘크리트의 진행성 파괴해석 (Progressive Fracture Analyses of Concrete by Finite Element Methods)

  • 송하원
    • 콘크리트학회지
    • /
    • 제8권1호
    • /
    • pp.145-153
    • /
    • 1996
  • 콘크리트의 파괴진행영역은 콘크리트의 균열선단의 브리징영역과 미세균열영역으로 구성되는 비선형영역으로서 콘크리트의 파기거동을 지배한다. 파괴진행영역을 고려한 파괴역학은 콘크리트에 유용하게 적용될 수 있으며 파괴진행영역 모델의 개발은 콘크리트의 파괴현상을 규명하는데 매우 중요하다. 본 논문에서는 콘크리트의 균열진행을 해석하기 위하여 선형 인장 연화곡선을 사용한 Dugdale-Barenblatt형 모델로 콘크리트의 브리징영역을 모델링하였고 이를 이산균열방법을 사용하여 단지 요소경계면에 파괴진행영역을 발생시켜 유한요소 해석하는 방법과 요소내의 불연속 균열면을 도입한 균열요소를 사용함으로써 이산균열방법의 결점을 보완한 해석방법을 제시하였다. 또한 해석 예를 통해 균열진행해석에 사용된 유한요소모델을 검증하였다.

Evaluation of Stress Intensity Factor for A Partially Patched Crack Using an Approximate Weight Function

  • Kim, Jong-Ho;Hong, Seong-Gu;Lee, Soon-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1659-1664
    • /
    • 2003
  • A cracked plate with a patch bonded on one side was treated with a crack-bridging model using weight function: assuming continuous distribution of springs acting between th crack surfaces, the stress intensity factor of the patched crack was numerically obtained. Especially in the case of a patched crack subjected to residual non-uniform stress, the stress intensity factor was easily with the corresponding approximate weight function. This paper presented the stress intensity factors for a crack partially patched within a finite plate or a patched crack initiated from a notch.

근사적 가중함수를 이용한 보강된 균열평판의 응력강도계수 계산에 대한 연구 (A study on the calculation of stress intensity factor for a patched crack using approximate weight function)

  • 김종호;이순복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.123-128
    • /
    • 2000
  • A cracked-plate with a patch bonded on one side is treated with a crack-bridging model: assuming continuous distribution of springs acting between crack surfaces. the approximate weight function was introduced to obtain the stress intensity factor of patched crack subjected to residual stress or non-uniform stress. The stress intensity factors for the partially patched crack within finite plate or the patched crack initiated from a notch were successfully obtained by numerical calculation.

  • PDF

콘크리트 균열진행의 유한요소 정규화 (Finite Element Regularization of Progressive Cracks in Concrete)

  • 송하원;변근주;이주영;서철;심별
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.279-284
    • /
    • 1994
  • Fracture mechanics does work for concrete, provided that one used a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important rules. The toughness due to bridging is dominant compared to the toughness induced by the microcracking, so that the bridging is the dominant mechanism governing the fracture process of concrete. In this paper the bridging zone, which is a part of extended macrocrck with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with lenear tension-softening curve for the analyses of crack growth in concrete Finite element technique is shown for inplementation of the model.

  • PDF

SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동: II. 이론적 분석 (R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: II. Theoretical Analysis)

  • 나상웅;이재형
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.368-375
    • /
    • 2000
  • Fracture toughness of particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC was analysed theoretically. According to the suggested particle bridging model for obtaining the R-curve height, the crack extension resistance for the long crack was linearly proportional to the residual calmping stress at the interface between the second phase and the matrix. It was also a function of the particle size and the content. It was confirmed that the rising R-curve behavior of Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ was owing to the strong crack bridging by SiC particles. For Al2O3/ZrO2/SiC composites, the tensional stress from the 3${\mu}{\textrm}{m}$ SiC particles was large enough to activate the spontaneous transformation of the ZrO2. The crack extension resistance due to the particle bridging mechanism did not seem to be affected much by the coupled toughening, but its resultant toughness increase could be significantly smaller due to the dependency on the matrix toughness.

  • PDF