When fitting a Cox proportional hazards model with missing covariates, it is inefficient to exclude observations with missing values in the analysis. Furthermore, if the missing-data mechanism is not Missing Completely At Random(MCAR), it may lead to biased parameter estimation. Many approaches have been suggested to handle the Cox proportional hazards model when covariates are sometimes missing, but they are based on the selection model. This paper suggest an approach to handle Cox proportional hazards model with missing covariates by using the pattern-mixture model (Little, 1993). The pattern-mixture model is expressed by the joint distribution of survival time and the missing-data mechanism. In the pattern-mixture model, many models can be considered by setting up various restrictions, and different results under various restrictions indicate the sensitivity of the model due to missing covariates. A simulation study was conducted to show the sensitivity of parameter estimation under different restrictions in a pattern-mixture model. The proposed approach was also applied to mouse leukemia data.
Pneumatic cylinder is widely used in the various industrial fields. Reliability Study of this field is very important part to the related companies. In this study, we want to predict the life of pneumatic cylinder using Cox (or proportional hazards) model. Used in biomedical applications, the Cox model can be used as an accelerated life testing model. We considered working pressure and temperature as stress factors. The statistical software is used to analyze and forecast the life data.
Journal of the Korean Data and Information Science Society
/
v.22
no.3
/
pp.613-618
/
2011
The proposed method is based on a penalized log partial likelihood of Cox proportional hazard model with L1-penalty. We use the iteratively reweighted least squares procedure to solve L1 penalized log partial likelihood function of Cox proportional hazard model. It provide the ecient computation including variable selection and leads to the generalized cross validation function for the model selection. Experimental results are then presented to indicate the performance of the proposed procedure.
Kim, Hyunsuk;Park, Taesung;Jang, Jinyoung;Lee, Seungyeoun
Genomics & Informatics
/
v.20
no.2
/
pp.23.1-23.9
/
2022
A survival prediction model has recently been developed to evaluate the prognosis of resected nonmetastatic pancreatic ductal adenocarcinoma based on a Cox model using two nationwide databases: Surveillance, Epidemiology and End Results (SEER) and Korea Tumor Registry System-Biliary Pancreas (KOTUS-BP). In this study, we applied two machine learning methods-random survival forests (RSF) and support vector machines (SVM)-for survival analysis and compared their prediction performance using the SEER and KOTUS-BP datasets. Three schemes were used for model development and evaluation. First, we utilized data from SEER for model development and used data from KOTUS-BP for external evaluation. Second, these two datasets were swapped by taking data from KOTUS-BP for model development and data from SEER for external evaluation. Finally, we mixed these two datasets half and half and utilized the mixed datasets for model development and validation. We used 9,624 patients from SEER and 3,281 patients from KOTUS-BP to construct a prediction model with seven covariates: age, sex, histologic differentiation, adjuvant treatment, resection margin status, and the American Joint Committee on Cancer 8th edition T-stage and N-stage. Comparing the three schemes, the performance of the Cox model, RSF, and SVM was better when using the mixed datasets than when using the unmixed datasets. When using the mixed datasets, the C-index, 1-year, 2-year, and 3-year time-dependent areas under the curve for the Cox model were 0.644, 0.698, 0.680, and 0.687, respectively. The Cox model performed slightly better than RSF and SVM.
Communications for Statistical Applications and Methods
/
v.24
no.6
/
pp.583-604
/
2017
The most popular regression model for the analysis of time-to-event data is the Cox proportional hazards model. While the model specifies a parametric relationship between the hazard function and the predictor variables, there is no specification regarding the form of the baseline hazard function. A critical assumption of the Cox model, however, is the proportional hazards assumption: when the predictor variables do not vary over time, the hazard ratio comparing any two observations is constant with respect to time. Therefore, to perform credible estimation and inference, one must first assess whether the proportional hazards assumption is reasonable. As with other regression techniques, it is also essential to examine whether appropriate functional forms of the predictor variables have been used, and whether there are any outlying or influential observations. This article reviews diagnostic methods for assessing goodness-of-fit for the Cox proportional hazards model. We illustrate these methods with a case-study using available R functions, and provide complete R code for a simulated example as a supplement.
Crossover trials of new drugs in the treatment of angina pectoris, which frequently use treadmill exercise test for the assessment of its efficacy, produce censored survival times. In this paper we consider analysis approaches for censored survival times from crossover trials. Previously, a stratified Cox model for paired observation and nonparametric methods have been presented as possible analysis methods. On the other hand, the differences of two survival times would produce interval-censored survival times and we propose a Cox model for interval-censored data as n alternative analysis method. Example data is analyzed in order to compare these different methods.
In a certain stochastic process, Cox's regression model is used to analyze multistate survival data. From this model, the regression parameter vectors, survival functions, and the probability of being in response function are estimated based on multistate Cox's partial likelihood and nonparametric likelihood methods. The asymptotic properties of these estimators are described informally through the counting process approach. An example is given to likelihood the results in this paper.
Nang Kyeong Lee;Joo Young Kim;Ji Soo Tak;Hyeong Rok Lee;Hyun Ji Jeon;Jee Myung Yang;Seung Won Lee
The Transactions of the Korea Information Processing Society
/
v.13
no.6
/
pp.260-268
/
2024
Cervical cancer is the fourth most common cancer in women worldwide, and more than 604,000 new cases were reported in 2020 alone, resulting in approximately 341,831 deaths. The Cox regression model is a major model widely adopted in cancer research, but considering the existence of nonlinear associations, it faces limitations due to linear assumptions. To address this problem, this paper proposes ResSurvNet, a new model that improves the accuracy of cervical cancer mortality prediction using ResNet's residual learning framework. This model showed accuracy that outperforms the DNN, CPH, CoxLasso, Cox Gradient Boost, and RSF models compared in this study. As this model showed accuracy that outperformed the DNN, CPH, CoxLasso, Cox Gradient Boost, and RSF models compared in this study, this excellent predictive performance demonstrates great value in early diagnosis and treatment strategy establishment in the management of cervical cancer patients and represents significant progress in the field of survival analysis.
We study the asymptotic behavior of the maximum partial likelihood estimator in the Cox proportional hazards model in the presence of nuisance parameters when the entry of patients is staggered. When entry of patients is simultaneous and there is only one regression parameter in the Cox model, the efficient score process of the partial likelihood is martingale and converges weakly to a time-chnaged Brownian motion. Our problem is to get a similar result in the presence of nuisance parameters when entry of patient is staggered.
This paper derives joint and conditional Lagrange multiplier tests based on information matrix for testing functional form and/or the presence of autocorrelation in a regression model. Small sample properties of these tests are assessed by Monte Carlo study and comparisons are made with LM tests based on Hessian matrix. The results show that the proposed $LM_E$ tests have the most appropriate finite sample performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.