DOI QR코드

DOI QR Code

Analysis of Interval-censored Survival Data from Crossover Trials with Proportional Hazards Model

교차계획 구간절단 생존자료의 비례위험모형을 이용한 분석

  • Kim, Eun-Young (Department of Biostatistics, The Catholic University of Korea) ;
  • Song, Hae-Hiang (Department of Biostatistics, The Catholic University of Korea)
  • 김은영 (가톨릭대학교 의학통계학과) ;
  • 송혜향 (가톨릭대학교 의학통계학과)
  • Published : 2007.03.31

Abstract

Crossover trials of new drugs in the treatment of angina pectoris, which frequently use treadmill exercise test for the assessment of its efficacy, produce censored survival times. In this paper we consider analysis approaches for censored survival times from crossover trials. Previously, a stratified Cox model for paired observation and nonparametric methods have been presented as possible analysis methods. On the other hand, the differences of two survival times would produce interval-censored survival times and we propose a Cox model for interval-censored data as n alternative analysis method. Example data is analyzed in order to compare these different methods.

협심증 치료의 신약에 대한 교차계획 임상시험(crossover clinical trials)에서 신약의 효능을 알아보는 운동테스트(treadmill exercise test) 결과는 중도절단 생존시간(censored survival times)으로 측정된다. 이 논문에서는 교차계획에서 수집된 중도절단 생존자료의 여러 가지 분석법에 대해 설명한다. 중도절단을 감안한 비모수적 방법들과 층화 Cox 비례위험모형 (stratified Cox proportional hazards model)에 근거한 분석법이 제시되었다. 한편, 교차계획의 두 시기에 걸쳐 수집된 생존시간의 차(difference)로부터 구간절단자료(interval censored data)가 생성되며 이에 근거한 분석법으로서 이 논문에서는 구간절단자료에 대한 Cox 비례위험모형 (proportional hazards model)의 가능성을 알아보며, 예제 자료로써 여러 방법들의 결과를 비교해 본다.

Keywords

References

  1. Feingold, M. and Gillespie, B. W. (1996). Cross-over trials with censored data, Statistics in Medicine, 15, 953-967 https://doi.org/10.1002/(SICI)1097-0258(19960530)15:10<953::AID-SIM213>3.0.CO;2-M
  2. Fine, J. (2006). Why bother with nonparametric estimators? In the Section of 'A Practicum on Interval Censoring'. IBC2006 (International Biometric Conference, 2006)
  3. Finkelstein, D. M. (1986). A proportional hazards model for interval-censored failure time data, Biometrics, 42, 845-854 https://doi.org/10.2307/2530698
  4. Finkelstein, D. M. and Wolfe, R. A. (1985). A semiparametric model for regression analysis of interval-censored failure time data, Biometrics, 41, 933-945 https://doi.org/10.2307/2530965
  5. France, L. A., Lewis, J. A. and Kay, R. (1991). The analysis of failure time data in crossover studies, Statistics in Medicine, 10, 1099-1113 https://doi.org/10.1002/sim.4780100710
  6. Freeman, P. R. (1989). The performance of the two-stage analysis of two-treatment, twoperiod cross-over trials, Statistics in Medicine, 8, 1421-1432 https://doi.org/10.1002/sim.4780081202
  7. Hoel, D. G. and Walburg, H. E., Jr. (1972). Statistical analysis of survival experiment, Journal of the National Cancer Institute, 49, 361-372
  8. Kim, J. H., Kang, D. R. and Nam, C. M. (2006). Logrank-type tests for comparing survival curves with interval-censored data, Computational Statistics & Data Analysis, 50, 3165-3178 https://doi.org/10.1016/j.csda.2005.06.014
  9. Lee, E. T., Desu, M. M. and Gehan, E. A. (1975). A Monte-Carlo study of the power of some two-sample tests, Biometrika, 62, 425-432 https://doi.org/10.1093/biomet/62.2.425
  10. Peto, R. and Pike, M. C. (1973). Conservatism of the approximation $\sum_(O-E)^2$/ E in the logrank test for survival data or tumor incidence data, Biometrics, 29, 579-584 https://doi.org/10.2307/2529177
  11. Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored data, Journal of the American Statistical Association, 69, 169-173 https://doi.org/10.2307/2285518
  12. Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data, Journal of the Royal Statistical Society, Ser. B, 38, 290-295