• Title/Summary/Keyword: Cosymplectic manifold

Search Result 36, Processing Time 0.018 seconds

On f-cosymplectic and (k, µ)-cosymplectic Manifolds Admitting Fischer -Marsden Conjecture

  • Sangeetha Mahadevappa;Halammanavar Gangadharappa Nagaraja
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.507-519
    • /
    • 2023
  • The aim of this paper is to study the Fisher-Marsden conjucture in the frame work of f-cosymplectic and (k, µ)-cosymplectic manifolds. First we prove that a compact f-cosymplectic manifold satisfying the Fisher-Marsden equation R'*g = 0 is either Einstein manifold or locally product of Kahler manifold and an interval or unit circle S1. Further we obtain that in almost (k, µ)-cosymplectic manifold with k < 0, the Fisher-Marsden equation has a trivial solution.

Critical rimennian metrics on cosymplectic manifolds

  • Kim, Byung-Hak
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.553-562
    • /
    • 1995
  • In a Recent paper [3], D. Chinea, M. Delon and J. C. Marrero proved that a cosymplectic manifold is formal and constructed an example of compact cosymplectic manifold which is not a global product of a Kaehler manifold with the circle. In this paper we study the compact cosymplectic manifolds with critical Riemannian metrics.

  • PDF

Contact CR-Warped product Submanifolds in Cosymplectic Manifolds

  • Atceken, Mehmet
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.965-977
    • /
    • 2016
  • The aim of this paper is to study the geometry of contact CR-warped product submanifolds in a cosymplectic manifold. We search several fundamental properties of contact CR-warped product submanifolds in a cosymplectic manifold. We also give necessary and sufficient conditions for a submanifold in a cosymplectic manifold to be contact CR-(warped) product submanifold. After then we establish a general inequality between the warping function and the second fundamental for a contact CR-warped product submanifold in a cosymplectic manifold and consider contact CR-warped product submanifold in a cosymplectic manifold which satisfy the equality case of the inequality and some new results are obtained.

ON THE CONHARMONIC CURVATURE TENSOR OF A LOCALLY CONFORMAL ALMOST COSYMPLECTIC MANIFOLD

  • Abood, Habeeb M.;Al-Hussaini, Farah H.
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.269-278
    • /
    • 2020
  • This paper aims to study the geometrical properties of the conharmonic curvature tensor of a locally conformal almost cosymplectic manifold. The necessary and sufficient conditions for the conharmonic curvature tensor to be flat, the locally conformal almost cosymplectic manifold to be normal and an η-Einstein manifold were determined.

SOME NOTES ON NEARLY COSYMPLECTIC MANIFOLDS

  • Yildirim, Mustafa;Beyendi, Selahattin
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.539-545
    • /
    • 2021
  • In this paper, we study some symmetric and recurrent conditions of nearly cosymplectic manifolds. We prove that Ricci-semisymmetric and Ricci-recurrent nearly cosymplectic manifolds are Einstein and conformal flat nearly cosymplectic manifold is locally isometric to Riemannian product ℝ × N, where N is a nearly Kähler manifold.

REEB FLOW SYMMETRY ON ALMOST COSYMPLECTIC THREE-MANIFOLDS

  • Cho, Jong Taek
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1249-1257
    • /
    • 2016
  • We prove that the Ricci operator S of an almost cosymplectic three-manifold M is invariant along the Reeb flow, that is, M satisfies ${\pounds}_{\xi}S=0$ if and only if M is either cosymplectic or locally isometric to the group E(1, 1) of rigid motions of Minkowski 2-space with a left invariant almost cosymplectic structure.

GEOMETRY OF LIGHTLIKE HYPERSURFACES OF AN INDEFINITE COSYMPLECTIC MANIFOLD

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.185-195
    • /
    • 2012
  • We study the geometry of lightlike hypersurfaces M of an inde nite cosymplectic manifold $\bar{M}$ such that either (1) the characterist vector field $\zeta$ of $\bar{M}$ belongs to the screen distribution S(TM) of M or (2) $\zeta$ belongs to the orthogonal complement $S(TM)^{\perp}$ of S(TM) in $T\bar{M}$.

NON-TANGENTIAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE COSYMPLECTIC MANIFOLD

  • Jin, Dae Ho
    • The Pure and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.89-101
    • /
    • 2013
  • In this paper, we study half lightlike submanifolds M of an indefinite cosymplectic manifold $\bar{M}$, whose structure vector field is not tangent to M. First, we construct two types of such half lightlike submanifolds, named by transversal and normal half lightlike submanifolds. Next, we characterize the lightlike geometries of such two types half lightlike submanifolds.