• Title/Summary/Keyword: Corrosion characteristics

Search Result 1,422, Processing Time 0.026 seconds

Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement (시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석 기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.367-375
    • /
    • 2007
  • Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.

Study on Stress Recovery Length of 7-Wire Strand due to Local Damage (강연선의 국부적 손상에 따른 응력 회복길이 분석 연구)

  • Seo, Dong-Woo;Kim, Byung-Chul;Jung, Kyu-San;Na, Wongi;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.150-156
    • /
    • 2017
  • This study examined the stress recovery length due to the local damage of a 7-wire strand, which is applied widely to PSC (Post Tensioned Concrete) bridges and cable-stayed bridges. The 7-wire strand is a multiple stranded steel of PC prestressing strand. Owing to the nature of the material, it is damaged continuously after completion with corrosion being the main cause of damage. On the other hand, due to its structural characteristics, it is difficult to grasp the degree of damage inside the cable and the pattern of stress variation. In the case of cables applied to bridges, the parts that are susceptible to corrosion are generated depending on the water supply and installation shape, which may cause local damage. This study analyzed the tendency of performance degradation and stress recovery length according to local damage of a 7-wire strand, which is applied mainly to bridge post-tensioning or stay cables. This study developed a computer-based simulation model that was validated with experimental results. The model developed in this study can be used to evaluate the safety level and estimate the remaining life span of P SC bridges or cable-stayed bridges.

Sunken Ship Precision Image Analysis Using Multi-Beam Echo Sounding Data (다중빔음향측심 자료를 이용한 침몰선박 정밀영상 분석 연구)

  • Lee, Seung-Hyun;Seo, Young Kyo;Suh, Jae-Joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.863-868
    • /
    • 2016
  • In this study, the precise shapes of sunken ships and information on seafloor topography were analyzed using data obtained from a multi-beam echo sounder. The state of each sunken ship was analyzed by processing diverse imagery data which was compared with data obtained from past investigations to determine changes in the state and circumjacent seafloor topography. Apparent changes in the seafloor topography around one sunken ship, the "Pacific Friend", were found from stern to bow as a result of continued submarine erosion and sedimentation. In the case of sunken ship "No. 7 Haeseong", the partial collapse of the bow was revealed in the seabed images captured in 2015, though it had still been intact in images captured during the Korea Hydrographic and Oceanographic Agency's investigation in 2011. This partial collapse was presumed to have resulted from the effects of continued tidal currents, the cargo load of the ship and continued corrosion of the ship over a long time on the seabed. Continuous monitoring of residual fuel inside the ship is necessary to avoid leakage and potential marine pollution. By conducting image analysis on these sunken ships, it has been determined that the structural safety of the ships is seriously influenced by tidal currents and seafloor topography, while the hulls will be continuously changed by corrosion. As a result, it can be concluded that the development of prediction and response techniques that take into consideration residual fuel leakage and environmental changes according to the geological characteristics of sunken ships is necessary.

Applicability of Colormetric Method for Estimation of Chloride Penetration in Concrete Structures (콘크리트 구조물의 염화물 침투 특성 파악을 위한 변색법의 적용성)

  • Yang Eun-Ik;Kim Myung-Yu;Leem Young-Moon;Park Hae-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.931-938
    • /
    • 2005
  • When concrete structures are exposed under marine condition for a long time, the steel in concrete is corroded due to the ingression of chlorides in the seawater. Because the damages of corrosion resulting from the chloride ion are very serious, many researches have been performed. Silver nitrate colormetric method that can measure easily penetration depth of chloride ion has been executed, recent)y. However, characteristics of silver nitrate colormetric method were not fully examined. Therefore, the objective of this paper Is to study the applicability of colormetric method. For the purpose of this, effect factors and reaction mechanism of colormetric method were investigated, and the colormetric method is applied for marine concrete structures. According to the results of silver nitrate colored method, two reactions such as white reaction of AgCl and brown reaction of AgOH were shown when $AgNO_3$ was sprayed in splited section. And velocity constant ratio(K) of two reactions appeared that white reaction, AgCl reacts with the fast speed by 3240. When the colormetric method was applied in concrete, it is reasonable that $AgNO_3$ solution more than 0.05N concentration was sprayed. It is confirmed that the colormetric method is useful tool for estimating the chloride of concrete structures in situ. The average chloride amount of colored parts indicates $0.9kg/m^3$ per concrete unit weight.

Study on Characteristics of SCC and AE Signals for Weld HAZ of HT-60 Steel (HT-60강 용접부의 SCC및 AE신호특성에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyo-Sun;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • In order to characterize the microscopic fracture behaviour of the weldment din stress corrosion cracking(SCC) phenomena, SCC and acoustic emission(AE) tests were carried out simultaneously and the correlation between mechanical paramenters obtained from SCC and AE tests was investigated. In the case of base metal, much more AE events were produced at -0.5V than at -0.8V because of the dissolution mechanism before the maximum load. Regardless of the applied voltages to the specimens, however, AE events decreased after the maximum load. In the case of weldment, lots of AE events with larger amplitude $range(40{\sim}100dB)$ were produced because of the singularities of weld HAZ in comparision to the base metal and post-weld heat-treated(PWHT) specimens. Numerous and larger cracks for the weldment were observed on the fractured surfaces by SEM examination. From these results, it was concluded that SCC for the weldment appeared most severely in synthetic seawater. Weld HAZ was softened by PWHT which also contributed to the reduced susceptibility to corrosive environment in comparison to the weldment.

  • PDF

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Relationship between the Tidal Range in Sea Level and Damage of Domestic Port Facility (해수면 조위차와 항만시설물의 손상과의 관계 분석)

  • Binna Lee;Jong Suk Lee;Sung Jin Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.55-61
    • /
    • 2023
  • In this study, a basic research was conducted to establish a maintenance plan considering the environmental factors and deterioration characteristics of port facilities. The precise safety diagnosis reports for Incheon and Busan port facilities were referenced to examine the extent of deterioration and damage. The relationship with the degradation environmental assessment presented in the current guidelines was also analyzed. The analysis of the damage level of Incheon and Busan port facilities revealed that Incheon Port exhibited approximately three times higher damage rate compared to Busan Port. In the case of Incheon Port, reinforcement corrosion and external damage showed similar proportions, while in Busan Port, reinforcement corrosion had a higher proportion compared to external damage. On the other hand, when comparing with the degradation environmental assessment presented in the guidelines, it was found that there were some limitations in performing quantitative evaluation based on the guidelines for assessing port facilities. Therefore, an analysis based on tidal range was conducted by referring to existing literature. The analysis of tidal range in Incheon and Busan regions showed that Incheon had approximately five times higher difference compared to Busan. It is considered that this can be utilized as a differentiated item from existing degradation environmental assessment criteria.

A Study on the Characteristics Assessment and Fabrication of Distribution Board according to KEMC Standards (KEMC 규정에 의한 분전반의 제작 및 특성 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.63-72
    • /
    • 2017
  • This study fabricated a low-voltage 10 circuit distribution board based on the KEMC (Korea Electrical Manufacturers Cooperative) 2102-610 standard and performed a characteristics assessment of the developed 10 circuit distribution board to secure product stability. The developed 10 circuit distribution board is designed to have the characteristics of insulation materials, as well as resistance to corrosion ultraviolet radiation and mechanical impact. The developed distribution board is fabricated to have an appropriate protection class of enclosure, electric shock prevention and protection circuits, switchgear and its components, internal electrical circuits and connectors, external conduct terminal, insulation characteristics, temperature rise test, heat resistance, etc. The developed 10 circuit distribution board consists of a single phase circuit and 3-phase circuits. It is possible to measure in real time the leakage current generated from the load distribution line by installing a sensor module at the load side of each of the branched switchgears. In addition, it is possible to increase a circuit according to the use and purpose of the load and to also manage and check the load in real time. Temperature rise tests were performed on the developed 10 circuit distribution board at 18 places including the inlet connection, main circuit and distribution circuit bus bars and bus bar supports, etc. The highest temperature of $65.3^{\circ}C$ was measured at the R-Phase of the connection of the MCCB power supply for the branch circuit bus bar and a temperature rise of $61.6^{\circ}C$ was measured at the T-Phase of the load side. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state.

CYCLIC FATIGUE OF THE SODIUM HYPOCHLORITE TREATED AND /OR STEAM AUTOCLAVED NICKEL-TITANIUM ENDODONTIC FILES (차아염소산나트륨 용액과 고압증기멸균이 근관치료용 니켈-타이타늄 파일의 주기적 피로 파절에 미치는 영향)

  • Cho, Hye-Young;Jung, Ii-Young;Lee, Chan-Young;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.54-65
    • /
    • 2008
  • The purpose of this study was to determine the effect of sodium hypochlorite and steam autoclaving on the cyclic fatigue of nickel-titanium endodontic files. Two types of files with a .06 taper and #30 were used, $K3^{(R)}$ (SybronEndo, Glendora, California, USA) and Hero $642^{(R)}$(Micro-Mega, BesanCon, France). The files were divided into 6 experimental groups containing 10 files each group depending the soaking time in 6% sodium hypochlorite solution and number of cycles of steam autoclave. After sterilization, a cyclic fatigue test was performed on each file, and the fracture time was recorded in seconds. The control group underwent the cyclic fatigue test only. After the test, the surface characteristics of the files were observed using scanning electron microscopy (SEM). All groups containing the Hero 64~ files showed a similar cyclic fatigue fracture time. However, the cyclic fatigue fracture time with the $K3^{(R)}$ files was significantly shorter in groups which were treated with sodium hypochlorite than in the control group (P < 0.05), SEM revealed both Hero $642^{(R)}$ and $K3^{(R)}$ files to have significant corrosion on the file surface in groups treated with sodium hypochlorite, compared with the sharp and regular blades of the control group. $K3^{(R)}$ files showed more corrosion than the Hero $642^{(R)}$ files. Bluntness of the blades of the $K3^{(R)}$ file was observed in groups treated with steam autoclave. Although there was no obvious destruction on the surface of steam autoclaved Hero $642^{(R)}$ files, slight bluntness was observed. Sterilizing with a steam autoclave is much less destructive to $K3^{(R)}$ files than sodium hypochlorite. The longer time exposed to sodium hypochlorite, the more destructive pattern was shown on the blades of the files. Therefore, when using sodium hypochlorite solution, the exposure time should be as short as possible in order to prevent corrosion and increase the cyclic fatigue fracture time.

Haze Characteristics of Mica Coated with Magnesium Oxide (산화마그네슘을 코팅한 마이카의 헤이즈 특성)

  • Kang, Kuk-Hyoun;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.888-894
    • /
    • 2015
  • Inorganic composite particles have excellent physical and chemical characteristics and have been applied in various industries. Recently, many studies have examined the optical properties, such as light scattering, refraction, transmission characteristics, by coating organic-inorganic materials on a substrate, such as mica. Mica is widely applied as a pigment, plastics, painted products, and ceramics because of its high chemical stability, durability and non-toxicity. Magnesium oxide has a range of properties, such as high light transmittance, corrosion resistance and non-toxicity, and it is used as an optical material and polymer additives. To use the optical properties of mica and magnesium oxide, mica was coated with magnesium hydroxide by a dissolution and recrystallization process. In this study, the optimal conditions for the haze value of the particles were found by adjusting the amount of precursors and pH. Magnesium hydroxide layers were formed on the surfaces of mica and converted to MgO after calcination at $400^{\circ}C$ for 4 h. The results showed that the value of MgO-coated mica haze can be controlled easily by the amount of the magnesium hydroxide and pH. The optical properties of the inorganic composite powder were analyzed using a hazemeter and the highest haze value was 85.92 % at pH 9. The physicochemical properties of the synthesized composite was analyzed by SEM, XRD, EDS, and PSA.