• 제목/요약/키워드: Core-outrigger systems

검색결과 12건 처리시간 0.024초

편심코어를 가진 초고층 건축물의 아웃리거 시스템 성능 평가 (Performance Evaluation of Outrigger System in Tall Buildings with Eccentric Core)

  • 박지형;김태호;김욱종;이도범
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.561-566
    • /
    • 2009
  • The outrigger system with a core is widely used for lateral load resisting system of tall building. Recently, structural systems in tall building are adopted to eccentric core and offset outrigger or one-armed outrigger system by trends in planning buildings of irregular type. Therefore, the performance of outrigger system with eccentric core in tall building is evaluated by 50-stories examples which are analyzed for variables such as layout of core and outrigger, arm length of outrigger and depth of outrigger and belt wall.

  • PDF

Optimum location of second outrigger in RC core walls subjected to NF earthquakes

  • Beiraghi, Hamid;Hedayati, Mansooreh
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.671-690
    • /
    • 2021
  • Seismic responses of RC core wall with two outriggers are investigated in this study. In the models analyzed here, one of the outriggers is fixed at the top of the building and the second is placed at different levels along the height of the system. Each of the systems resulting from the placement of the outrigger at different locations is designed according to the prescriptive codes. The location of the outrigger changes along the height. Linear design of all the structures is accomplished by using prescriptive codes. Buckling restrained braces (BRBs) are used in the outriggers and forward directivity near fault and far fault earthquake record sets are used at maximum considered earthquake (MCE) level. Results from nonlinear time history analysis demonstrate that BRB outriggers can change the seismic responses like force distribution and deformation demand of the RC core-walls over the height and lead to the new plastic hinge arrangement over the core-wall height. Plasticity extension in the RC core wall occurs at the base as well as adjacent to the outrigger levels. Considering the maximum inter-story drift ratio (IDR) demand as an engineering parameter, the best location for the second outrigger is at 0.75H, in which the maximum IDR at the region upper the second outrigger level is approximately equal to the corresponding value in the lower region.

The Evolution of Outrigger System in Tall Buildings

  • Ho, Goman W.M.
    • 국제초고층학회논문집
    • /
    • 제5권1호
    • /
    • pp.21-30
    • /
    • 2016
  • The structural efficiency of tall buildings heavily depends on the lateral stiffness and resistance capacity. Among those structural systems for tall buildings, outrigger system is one of the most common and efficient systems especially for those with relatively regular floor plan. The use of outriggers in building structures can be traced back from early 50 from the concept of deep beams. With the rise of building height, deep beams become concrete walls or now in a form of at least one story high steel truss type of outriggers. Because of the widened choice in material to be adopted in outriggers, the form and even the objective of using outrigger system is also changing. In the past, outrigger systems is only used to provide additional stiffness to reduce drift and deflection. New applications for outrigger systems now move to provide additional damping to reduce wind load and acceleration, and also could be used as structural fuse to protect the building under a severe earthquake condition. Besides analysis and member design, construction issue of outrigger systems is somehow cannot be separated. Axial shortening effect between core and perimeter structure is unavoidable. This paper presents a state-of-the-art review on the outrigger system in tall buildings including development history and applications of outrigger systems in tall buildings. The concept of outrigger system, optimum topology, and design and construction consideration will also be discussed and presented.

Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site

  • Joseph, Leonard M.;Gulec, C. Kerem;Schwaiger, Justin M.
    • 국제초고층학회논문집
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 2016
  • The 1100 foot [335 m] tall Wilshire Grand Center tower under construction in Los Angeles illustrates many key outrigger issues. The tower has a long, narrow floor plan and slender central core. Outrigger braces at three groups of levels in the tower help provide for occupant comfort during windy conditions as well as safety during earthquakes. Because outrigger systems are outside the scope of prescriptive code provisions, Performance Based Design (PBD) using Nonlinear Response History Analysis (NRHA) demonstrated acceptability to the Los Angeles building department and its peer review panel. Buckling Restrained Brace (BRB) diagonals are used at all outrigger levels to provide stable cyclic nonlinear behavior and to limit forces generated at columns, connections and core walls. Each diagonal at the lowest set of outriggers includes four individual BRBs to provide exceptional capacities. The middle outriggers have an unusual 'X-braced Vierendeel' configuration to provide clear hotel corridors. The top outriggers are pre-loaded by jacks to address long-term differential shortening between the concrete core and concrete-filled steel perimeter box columns. The outrigger connection details are complex in order to handle large forces and deformations, but were developed with contractor input to enable practical construction.

Developments of Structural Systems Toward Mile-High Towers

  • Moon, Kyoung Sun
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.197-214
    • /
    • 2018
  • Tall buildings which began from about 40 m tall office towers in the late $19^{th}$ century have evolved into mixed-use megatall towers over 800 m. It is expected that even mile-high towers will soon no longer be a dream. Structural systems have always been one of the most fundamental technologies for the dramatic developments of tall buildings. This paper presents structural systems employed for the world's tallest buildings of different periods since the emergence of supertall buildings in the early 1930s. Further, structural systems used for today's extremely tall buildings over 500 m, such as core-outrigger, braced mega-tube, mixed, and buttressed core systems, are reviewed and their performances are studied. Finally, this paper investigates the potential of superframed conjoined towers as a viable structural and architectural solution for mile-high and even taller towers in the future.

Earthquake effects on the energy demand of tall reinforced concrete walls with buckling-restrained brace outriggers

  • Beiraghi, Hamid
    • Structural Engineering and Mechanics
    • /
    • 제63권4호
    • /
    • pp.521-536
    • /
    • 2017
  • Reinforced concrete core-wall structures with buckling-restrained brace outriggers are interesting systems which have the ability to absorb and dissipate energy during strong earthquakes. Outriggers can change the energy demand in a tall building. In this paper, the energy demand was studied by using the nonlinear time history analysis for the mentioned systems. First, the structures were designed according to the prescriptive codes. In the dynamic analysis, three approaches for the core-wall were investigated: single plastic hinge (SPH), three plastic hinge (TPH) and extended plastic hinge (EPH). For SPH approach, only one plastic hinge is allowed at the core-wall base. For TPH approach, three plastic hinges are allowed, one at the base and two others at the upper levels. For EPH approach, the plasticity can extend anywhere in the wall. The kinetic, elastic strain, inelastic and damping energy demand subjected to forward directivity near-fault and ordinary far-fault earthquakes were studied. In SPH approach for all near-fault and far-fault events, on average, more than 65 percent of inelastic energy is absorbed by buckling-restrained braces in outrigger. While in TPH and EPH approaches, outrigger contribution to inelastic energy demand is reduced. The contribution of outrigger to inelastic energy absorption for the TPH and EPH approaches does not differ significantly. The values are approximately 25 and 30 percent, respectively.

A simple mathematical model for static analysis of tall buildings with two outrigger-belt truss systems

  • Rahgozar, Reza;Ahmadi, Ali Reza;Hosseini, Omid;Malekinejad, Mohsen
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.65-84
    • /
    • 2011
  • In this paper a simple mathematical model for approximate static analysis of combined system of framed tube, shear core and two outrigger-belt truss structures subjected to lateral loads is presented. In the proposed methodology, framed tube is modeled as a cantilevered beam with a box section and interaction between shear core and outrigger-belt truss system with framed tube is modeled using torsional springs placed at location of outrigger-belt truss; these torsional springs act in a direction opposite to rotation generated by lateral loads. The effect of shear lag on axial deformation in flange is quadratic and in web it is a cubic function of geometry. Here the total energy of the combined system is minimized with respect to lateral deflection and rotation in plane section. Solution of the resulting equilibrium equations yields the unknown coefficients of shear lag along with the stress and displacement distributions. The results of a numerical example, 50 storey building subjected to three different types of lateral loading obtained from SAP2000 are compared to those of the proposed method and the differences are found to be reasonable. The proposed method can be used during the preliminary design stages of a tall building and can provide a better understanding of the effects of various parameters on the overall structural behavior.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

Steel Module-to-Concrete Core Connection Methods in High Rise Modular Buildings: A Critical Review

  • Poudel, Bishal;Lee, Seungtaek;Choi, Jin Ouk
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.571-578
    • /
    • 2022
  • Modularization in a high-rise building is different from a small building, as it is exposed to more lateral forces like wind and earthquakes. The integrity, robustness, and overall stability of the modules and their performance is based on the joining techniques and strong structural systems. High lateral stiff construction structures like concrete shear walls and frames, braced steel frames, and steel moment frames are used for the stability of high-rise modular buildings. Similarly, high-rise stick-built buildings have concrete cores and perimeter frames for lateral load strength and stiffness. Methods for general steel-concrete connections are available in many works of literature. However, there are few modular-related papers describing this connection system in modular buildings. This paper aims to review the various research and practice adopted for steel-to-concrete connections in construction and compare the methods between stick-built buildings and modular buildings. The literature review shows that the practice of steel module-to-concrete core connection in high-rise modular buildings is like outrigger beams-to-concrete core connection in stick-built framed buildings. This paper concludes that further studies are needed in developing proper guidelines for a steel module-to-concrete core connection system in high-rise modular buildings.

  • PDF

Effects of Perimeter to Core Connectivity on Tall Building Behavior

  • Besjak, Charles;Biswas, Preetam;Petrov, Georgi I.;Streeter, Matthew;Devin, Austin
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2017
  • The Pertamina Energy Tower (PET) and Manhattan West North Tower (MWNT) are two supertall towers recently designed and engineered by Skidmore, Owings & Merrill (SOM). The structural system for both buildings consists of an interior reinforced concrete core and a perimeter moment frame system, which is primarily structural steel. As is typical for tall towers with both concrete and steel elements, staged construction analysis was performed in order to account for the long term effects of creep and shrinkage, which result in differential shortening between the interior concrete core and steel perimeter frame. The particular design of each tower represents two extremes of behavior; PET has a robust connection between the perimeter and core in the form of three sets of outriggers, while the perimeter columns of MWNT do not reach the ground, but are transferred to the core above the base. This paper will present a comparison of the techniques used during the analysis and construction stages of the design process with the goal of understanding the differences in structural behavior of these two building systems in response to the long term effects of creep and shrinkage. This paper will also discuss the design and construction techniques implemented in order to minimize the differential shortening between the interior and exterior over the lifespan of these towers.