• Title/Summary/Keyword: Core shell structure

Search Result 258, Processing Time 0.023 seconds

Synthesis and Application of cPSMA-PSMA Microcapsule Absorbent for Cement Mortars (시멘트 모르타르용 cPSMA-PSMA 마이크로캡슐 흡수제 제조 및 적용)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.216-222
    • /
    • 2012
  • We synthesized microcapsule absorbent with crosslinked poly(styrene-$alt$-maleic anhydride) (PSMA) as a core and PSMA as a shell by a precipitation polymerization method for the delayed absorption of excess water in cement mortar. cPSMA-PSMAs with core-shell structure were synthesized with ratios of 1/1, 1/2 and 1/3 as core monomer mass to shell monomer mass to control shell thickness. We observed the hydrolysis of PSMA in cement-saturated aqueous solution by a FTIR spectrometer. We observed good core-shell structure microcapsules for 1/2(cPSMA #3), but observed incomplete core-shell structure for 1/1(cPSMA #2) and 1/3(cPSMA #4) of core/shell monomer ratios. The swelling ratio of cPSMA #3 in cement-saturated aqueous solution was increased until 20 min. After that it was decreased until 2 hrs swelling time, and they started to increase again. The viscosities of cement paste with cPSMA #3 microcapsules were very slowly increased until 1 hr and increased fast after 1.5 hrs. Cement mortar with 0.5 wt% cPSMA #1 having only core part showed about 5% increase in compressive strength compared to that of plain cement mortar. cPSMA #3 added cement mortar showed the highest compressive strength with 7% increase.

A Study of Synthesis and Property of $CaCO_3$/Organic Core-Shell Particle (탄산칼슘 /유기계 Core-Shell 입자의 제조와 물성에 관한 연구)

  • Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.38-44
    • /
    • 2010
  • Core-shell particles of inorganic/organic pair were synthesized from $CaCO_3$ absorbed sodium dodecyl benzene sulfonate(SDBS) surfactant. Shell components were synthesized by sequential emulsion polymerization. Various monomers were used as shell components such as methyl methacrylate(MMA), ethyl acrylate(EA), butyl acrylate(BA), and styrene(St). Ammonium persulfate(APS) was used as an initiator and 2-ethylhexyl acylate(2-EHA) was used as a functional monomer, In the $CaCO_3$/organic core-shell particle polymerization, $CaCO_3$ absorbed surfactant SDBS of 0.5 wt% was prepared first and then core $CaCO_3$ was encapsulated by emulsion polymerization. 0.1 wt% of APS was added sequentially to minimize the formation of new monomer particle during shell polymerization. The structure of inorganic/organic core-shell particles were characterized by measuring the decomposition degree of $CaCO_3$ using HCl solution, thermogravimetric analyzer, scanning electron microscope, and transmission electron microscope.

The Effect of Anionic Surfactants in Synthesizing Calcium Carbonate/Acrylate Core-Shell Polymer (탄산칼슘/아크릴계 유기물의 코어-셀 합성에서 음이온 계면활성제의 영향)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • The core-shell latex particles were prepared by sequential emulsion polymerization using alkyl methacrylate as a shell monomer and potassium persulfate (KPS) as an initiator. We study the effects of core-shell structure of calcium carbonate/alkyl methacrlyate in the presence of an anionic surfactant sodium lauryl sulfate (SLS) and polyoxyethylene alkyl ether sulfate (EU-S133D)). The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by transmission electron microscope (TEM).

Synthesis of Trimetallic Au@Pb@Pt Core-shell Nanoparticles and their Electrocatalytic Activity toward Formic Acid and Methanol

  • Patra, Srikanta;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1485-1488
    • /
    • 2009
  • A facile, seed-mediated preparation method of trimetallic Au@Pb@Pt core-shell nanoparticles is developed. Au nanoparticles are the template seeds onto which sequentially reduced Pb and Pt are deposited. The trimetallic core-shell structure is confirmed by UV-Vis spectroscopy, TEM and EDS analysis, and cyclic voltammetry. The trimetallic Au@Pb@Pt core-shell nanoparticles show high electrocatalytic activity for formic acid and methanol electrooxidation.

Plasma Treatment Effect of Organic/Organic Core-Shell Acrylic Adhesive Binder (II) (Organic/Organic Core-Shell 아크릴 접착바인더의 플라즈마 처리영향 (II))

  • Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • Adhesive binders with core-shell structure of organic/organic pair were prepared by emulsion polymerization of acrylic monomers, such as methyl methacrylate(MMA), ethyl acrylate(EA), n-butyl acrylate(BA), and styrene(St). Ammonium persulfate (APS) was used as an water soluble initiator in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS). Non-woven fabric and leather were impregnated with the adhesive binder. The surface of the impregnated fabric and leather were treated with plasma technique and then kinetics analysis and mechanical properties were measured. The conversions of the polymerization of core-shell binder (MMA/EA, MMA/BA) were greater than 90%. When the core-shell binder was prepared at equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the impregnated and plasma-treated non-woven/non-woven fabric has the order of MMA/St, EA/BA, BA/MMA, EA/St, and EA/MMA. When the core-shell binder was prepared at non-equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the non-woven fabric/leather has the order of MMA/BA, BA/EA, MMA/EA, St/MMA, and EA/St.

Structure and Magnetic Characterization of Core-Shell Fe@ZrO2 Nanoparticles Synthesized by Sol-Gel Process

  • Chaubey, Girija S.;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2279-2282
    • /
    • 2007
  • Highly crystalline, uniform Fe nanoparticles were successfully synthesized and encapsulated in zirconia shell using sol-gel process. Two different approaches have been employed for the coating of Fe nanoparticle with zirconia. The thickness of zirconia shell can be readily controlled by altering molar ratio of Fe nanoparticle core to zirconia precursor in the first case where as reaction time was found to be most effective parameter to controlled the shell thickness in the second method. The structure and magnetic properties of the ZrO2-coated Fe nanoparticles were studied. TEM and HRTEM images show a typical core/shell structure in which spherical α-iron crystal sized of ~25 nm is surrounded by amorphous ZrO2 coating layer. TGA study showed an evidence of weight loss of less than 2% over the temperature range of 50-500 °C. The nanoparticles are basically in ferromagnetic state and their magnetic properties depend strongly on annealing temperature. The thermal treatment carried out in as-prepared sample resulted in reduction of coercivity and an increase in saturation magnetization. X-ray diffraction experiments on the samples after annealing at 400-600 °C indicate that the size of the Fe@ZrO2 particles is increased slightly with increasing annealing temperature, indicating the ZrO2 coating layer is effective to interrupt growing of iron particle according to heat treatment.

Nanostructure Construction of SiO2@Au Core-Shell by In-situ Synthesis (코어-쉘 구조 SiO2@Au 나노입자의 in-situ 합성)

  • Pyeon, Mu-Jae;Kim, Do Kyung;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.420-425
    • /
    • 2018
  • Core-shell structured nanoparticles are garnering attention because these nanoparticles are expected to have a wide range of applications. The objective of the present study is to improve the coating efficiency of gold shell formed on the surface of silica nanoparticles for $SiO_2@Au$ core-shell structure. For the efficient coating of gold shell, we attempt an in-situ synthesis method such that the nuclei of the gold nanoparticles are generated and grown on the surface of silica nanoparticles. This method can effectively form a gold shell as compared to the conventional method of attaching gold nanoparticles to silica particles. It is considered possible to form a dense gold shell because the problems caused by electrostatic repulsion between the gold nanoparticles in the conventional method are eliminated.

Highly Luminescent Multi-shell Structured InP Quantum Dot for White LEDs Application

  • Kim, Gyeong-Nam;Jeong, So-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.531-531
    • /
    • 2012
  • So many groups have been researching the green quantum dots such as InP, InP/ZnS for overcoming the semiconductor nanoparticles composed with heavy metals like as Cd and Pb so on. In spite of much effort to keep up CdSe quantum dots, it does not reach the good properties compared with CdSe/ZnS quantum dots. This quantum dot has improved its properties through the generation of core/shell CdSe/ZnS structure or core/multi-shell structures like as CdSe/CdS/ZnS and CdSe/CdS/ CdZnS/ZnS. In this research, we try to synthesize the InP multi-shell structure by the successiveion layer absorption reaction (SILAR) in the one pot. The synthesized multi-shell structure has improved quantum yield and photo-stability. To generate white light, highly luminescent InP multi-shell quantum dots were mixed with yellow phosphor and integrated on the blue LED chip. This InP multi-shell improved red region of the LEDs and generated high CRI.

  • PDF

Synthesis of Core/shell Structured Ag/C Nano Particles and Properties on Annealing Conditions (전기선폭발법을 이용한 core/shell 구조 Ag/C 나노 입자의 제조 및 열처리조건에 따른 특성)

  • Jun, S.H.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.295-301
    • /
    • 2010
  • Multi shell graphite coated Ag nano particles with core/shell structure were successfully synthesized by pulsed wire evaporation (PWE) method. Ar and $CH_4$ (10 vol.%) gases were mixed in chamber, which played a role of carrier gas and reaction gas, respectively. Graphite layers on the surface of silver nano particles were coated indiscretely. However, the graphite layers are detached, when the particles are heated up to $250^{\circ}C$ in the air atmosphere. In contrast, the graphite coated layer was stable under Ar and $N_2$ atmosphere, though the core/shell structured particles were heated up to $800^{\circ}C$. The presence of graphite coated layer prevent agglomeration of nanoparticles during heat treatment. The dispersion stability of the carbon coated Ag nanoparticles was higher than those of pure Ag nanoparticles.

Development of Functional Microsphere( II ) - Surface Modification and Properties of EVA Microsphere - (기능성 microsphere의 개발(II) - EVA Microsphere의 표면개질과 특성 -)

  • Kim Hea-In;Park Heung-Sup;Park Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.17 no.3 s.82
    • /
    • pp.26-33
    • /
    • 2005
  • EVA microsphere was prepared by a thermally induced phase separation. EVAL microsphere was made by a saponification on sheath of EVA microsphere. And microcapsule with EVA core-PU shell structure was synthesized by interfacial polymerization using diisocyanates with PEG in gelatin aqueous solution as the stabilizing agent. The effects of chemical structure of diisocyanate on the average particle size and distribution, morphology, color strength and friction fastness of core-shell particles were investigated to design microcapsule. The friction fastness of the fabrics printed with EVA core-PU shell microcapsules had the 4-5 grade.