• Title/Summary/Keyword: Core set

Search Result 928, Processing Time 0.038 seconds

Comparison of Nios II Core-based Accelerators (Niod II 코어기반 가속기 비교)

  • Song, Gi-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.639-645
    • /
    • 2015
  • Checksum and residue checking accelerators were implemented on a Nios II core-based platform according to component method, in which the corresponding hardware was implemented with HDL coding, a custom instruction method, in which the instruction set of the processor was extended, and the C2H method, in which the corresponding logic was automatically created by the C2H compiler. The processing results from each accelerator for each algorithm were then examined and compared. The results of the comparison showed that the accelerator implemented with the C2H method is the fastest in terms of the execution time, and the accelerator with custom instruction requires the least add-on from the viewpoint of add-on hardware.

Circuit Design and Simulation Study of an RSFQ Switch Element for Optical Network Switch Applications (광 네트워크 스위치 응용을 위한 RSFQ Switch의 회로 설계 및 시뮬레이션)

  • 홍희송;정구락;박종혁;임해용;장영록;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.13-16
    • /
    • 2003
  • In this work, we have studied about an RSFQ (Rapid Single Flux Quantum) switch element. The circuit was designed, simulated, and laid out for mask fabrication. The switch cell was composed of a D flip-flop, a splitter, a confluence buffer, and a switch core. The switch core determined if the input data could pass to the output. “On” and o“off” controls in the switch core could be possible by utilizing an RS flip-flop. When a control pulse was input to the “on” port, the RS flip-flop was in the set state and passed the input pulses to the output port. When a pulse was input to the “off” port, the RS flip-flop was in the reset state and prevented the input pulses from transferring to the output port. We simulated and optimized the switch element circuit by using Xic, WRspice, and Julia. The minimum circuit margins in simulations were more than $\pm$20%. We also performed the mask layout of the circuit by using Xic and Lmeter.

  • PDF

An Analysis of Gravity-Assisted Melting of Subcooled Solid Filled Inside a Spherical Capsule (구형용기내 고상의 하강운동을 고려한 융해과정의 해석)

  • 서정세;김찬중;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2601-2610
    • /
    • 1993
  • A numerical study on the melting process inside an isothermal spherical capsule is made. It is assumed that the phase change medium of its solid phase is heavier than the liquid phase and therefore the unmelted solid core is continuously moving downward on account of gravity forces. Such a gravity-assisted melting is commonly characterized by the existence of a thin liquid film below the solid core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow and heat transfer characteristics associated with the gravity-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved without subdivision of the solution domains. For example, the liquid film region and the upper melted region are treated here as one domain and thus obviating laborious efforts to couple them. Numerical results are obtained by varying the Rayleigh numbers and the degree of subcooling. For the range of parameters examined, the presence of subcooling was found to impede the melting rate. The dropping velocity of the unmelted solid core was observed to affect the natural convection in the liquid significantly. When compared with the available experimental data, much improved prediction was achieved.

Local and global buckling condition of all-steel buckling restrained braces

  • Mirtaheri, Seyed Masoud;Nazeryan, Meissam;Bahrani, Mohammad Kazem;Nooralizadeh, Amin;Montazerian, Leila;Naserifard, Mohamadhosein
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.217-228
    • /
    • 2017
  • Braces are one of the retrofitting systems of structure under earthquake loading. Buckling restrained braces (BRBs) are one of the very efficient braces for lateral loads. One of the key needs for a desirable and acceptable behavior of buckling-restraining brace members under intensive loading is that it prevents total buckling until the bracing member tolerates enough plastic deformation and ductility. This paper presents the results of a set of analysis by finite element method on buckling restrained braces in which the filler materials within the restraining member have been removed. These braces contain core as the conventional BRBs, but they have a different buckling restrained system. The purpose of this analysis is conducting a parametric study on various empty spaces between core and restraining member, the effect of friction between core and restraining member and applying initial deformation to brace system to investigate the global buckling behavior of these braces. The results of analysis indicate that the flexural stiffness of restraining member, regardless of the amount of empty space, can influence the global buckling behavior of brace significantly.

Priority Re-setting for Future Core & Strategic Technologies in Agricultural and Environmental Science (농업환경 분야의 미래유망기술 및 전략기술에 관한 우선순위 재설정)

  • Cho, Keun-Tae;Joo, Jin-Ho;Ok, Yong-Sik;Shin, Bong-Chul;Kim, Jee-Yong;Lee, Jong-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.395-405
    • /
    • 2008
  • The objective of this study was to set priority for future core technologies in agricultural and environmental science using analytic hierarchy process(AHP). Forty-six technologies were derived by specialist meetings. Evaluation criteria, for setting the priority were decided as 'technology', 'marketability', and 'public'. Eighteen specialists in agricultural and environmental science answered to the questionnaire for AHP. As the results, 'technology' was decided as the most important evaluation criterion. The 'Feasibility' in 'technology' criterion, 'Market Growth' in 'marketability' criterion, and 'Impact to other industry' in 'public' criterion were decided as sub-criteria in each criterion. The most important technology was 'Risk assessment of toxic heavy metals and establishment of accreditation criteria for environmentally friendly agricultural products.

Development of a Hybrid Watershed Model STREAM: Model Structures and Theories (복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론)

  • Cho, Hong-Lae;Jeong, Euisang;Koo, Bhon Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.

P56 LCK Inhibitor Identification by Pharmacophore Modelling and Molecular Docking

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.200-206
    • /
    • 2007
  • Pharmacophore models for lymphocyte-specific protein tyrosine kinase (P56 LCK) were developed using CATALYST HypoGen with a training set comprising of 25 different P56 LCK inhibitors. The best quantitative pharmacophore hypothesis comprises of one hydrogen bond acceptor, one hydrogen bond donor, one hydrophobic aliphatic and one ring aromatic features with correlation coefficient of 0.941, root mean square deviation (RMSD) of 0.933 and cost difference (null cost-total cost) of 66.23. The pharmacophore model was validated by two methods and the validated model was further used to search databases for new compounds with good estimated LCK inhibitory activity. These compounds were evaluated for their binding properties at the active site by molecular docking studies using GOLD software. The compounds with good estimated activity and docking scores were evaluated for physiological properties based on Lipinski's rules. Finally 68 compounds satisfied all the properties required to be a successful inhibitor candidate.

Validation of Serpent-SUBCHANFLOW-TRANSURANUS pin-by-pin burnup calculations using experimental data from the Temelín II VVER-1000 reactor

  • Garcia, Manuel;Vocka, Radim;Tuominen, Riku;Gommlich, Andre;Leppanen, Jaakko;Valtavirta, Ville;Imke, Uwe;Ferraro, Diego;Uffelen, Paul Van;Milisdorfer, Lukas;Sanchez-Espinoza, Victor
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3133-3150
    • /
    • 2021
  • This work deals with the validation of a high-fidelity multiphysics system coupling the Serpent 2 Monte Carlo neutron transport code with SUBCHANFLOW, a subchannel thermalhydraulics code, and TRANSURANUS, a fuel-performance analysis code. The results for a full-core pin-by-pin burnup calculation for the ninth operating cycle of the Temelín II VVER-1000 plant, which starts from a fresh core, are presented and assessed using experimental data. A good agreement is found comparing the critical boron concentration and a set of pin-level neutron flux profiles against measurements. In addition, the calculated axial and radial power distributions match closely the values reported by the core monitoring system. To demonstrate the modeling capabilities of the three-code coupling, pin-level neutronic, thermalhydraulic and thermomechanic results are shown as well. These studies are encompassed in the final phase of the EU Horizon 2020 McSAFE project, during which the Serpent-SUBCHANFLOW-TRANSURANUS system was developed.

Electric power frequency and nuclear safety - Subsynchronous resonance case study

  • Volkanovski, Andrija;Prosek, Andrej
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1017-1023
    • /
    • 2019
  • The increase of the alternate current frequency results in increased rotational speed of the electrical motors and connected pumps. The consequence for the reactor coolant pumps is increased flow in primary coolant system. Increase of the current frequency can be initiated by the subsynchronous resonance phenomenon (SSR). This paper analyses the implications of the SSR and consequential increase of the frequency on the nuclear power plant safety. The Simulink $MATLAB^{(R)}$ model of the steam turbine and governor system and RELAP5 computer code of the pressurized water reactor are used in the analysis. The SSR results in fast increase of reactor coolant pumps speed and flow in the primary coolant system. The turbine trip value is reached in short time following SSR. The increase of flow of reactor coolant pumps results in increase of heat removal from reactor core. This results in positive reactivity insertion with reactor power increase of 0.5% before reactor trip is initiated by the turbine trip. The main parameters of the plant did not exceed the values of reactor trip set points. The pressure drop over reactor core is small discarding the possibility of core barrel lift.

Evaluation of the reutilization of used nuclear fuel in a PWR core without reprocessing

  • Zafar, Zafar Iqbal;Park, Yun Seo;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.345-355
    • /
    • 2019
  • Use of the reconstructed fuel assemblies from partially burnt nuclear fuel pins is analyzed. This reutilization option is a potential candidate technique to make better use of the nuclear resources. Standard two step method is used to calculate node i.e. fuel assembly average burnup and then pin by pin ${\eta}$ values are reconstructed to ascertain the residual reactivity in the used fuel pins. Fuel pins with ${\eta}$ > 1:0 are used to reconstruct to-be-reused fuel assemblies. These reconstructed fuel assemblies are burnt during the cycle 3, 4, 5 and 6 of a 1000 MW PWR core by replacing fresh, once burnt and twice burnt fuel assemblies of the reference core configurations. It is concluded that using reconstructed fuel assemblies for the fresh fuel affect dearly on the cycle length (>50 EFPD) when more than 16 fresh fuel assemblies are replaced. However, this loss is less than 20 days if the number of fresh fuel assemblies is less than eight. For the case of replacing twice burned fuel, cycle length could be increased slightly (10 days or so) provided burnt fuel pins from other reactors were also available. Reactor safety parameters, like axial off set (< ${\pm}10%$), Doppler temperature coefficient (<0), moderator temperature coefficient at HFP (<0) are always satisfied. Though, 2D and 3D pin peaking factors are satisfied (<1:55) and (<2:52) respectively, for the cases using eight or less reconstructed fuel assemblies only.