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Pharmacophore models for lymphocyte-specific protein tyrosine kinase (P56 LCK) were developed using 
CATALYSTHypoGen with a training set comprising of 25 different P56 LCK inhibitors. The best quantitative 
pharmacophore hypothesis comprises of one hydrogen bond acceptor, one hydrogen bond donor, one 
hydrophobic aliphatic and one ring aromatic features with correlation coefficient of 0.941, root mean square 
deviation (RMSD) of 0.933 and cost difference (null cost-total cost) of 66.23. The pharmacophore model was 
validated by two methods and the validated model was further used to search databases for new compounds 
with good estimated LCK inhibitory activity. These compounds were evaluated for their binding properties at 
the active site by molecular docking studies using GOLD software. The compounds with good estimated 
activity and docking scores were evaluated for physiological properties based on Lipinski’s rules. Finally 68 
compounds satisfied all the properties required to be a successful inhibitor candidate.
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Introduction

Eukaryotic protein kinases constitute a large family of 
homologous proteins that catalyze the transfer of the gamma 
phosphate group of ATP or GTP to the hydroxyl group of 
serine, threonine or tyrosine in a substrate protein.1 Protein 
tyrosine kinases (PTKs) are critically involved in signaling 
pathways that regulate cell growth, differentiation, activation, 
and transformation.2-4 Malfunctions of cellular signaling 
have been associated with many diseases including cancer 
and diabetes. PTKs can be divided into receptor tyrosine 
kinases (RTKs) and non-receptor (cytosolic) tyrosine 
kinases.5,6 Non-receptor tyrosine kinases belonging to the 
Src family are key players in signal transduction. Some Src 
kinases (Fyn, Src, Yes) are found in most cell types whereas 
others exhibit a more restricted tissue distribution (Lck, Hck, 
Blk) and have more specific tasks in signal transduction.7

Lymphocyte-specific protein tyrosine kinase (LCK) is a 
member of the Src family of non-receptor protein tyrosine 
kinases,8,9 expressed primarily in T-Lymphocytes and natural 
killer cells.10,11 LCK is essential for T-cell development and 
function.12 It is constitutively associated with the cyto­
plasmic portions of the CD4 and CD8 surface receptors and 
plays a key role in T-cell antigen receptor (TCR) linked 
signal transduction pathways.13-15 Studies have shown that 
the catalytic activity of LCK is regulated by tyrosine phos­
phorylation at two sites: Tyr394 in the catalytic domain and 
Tyr505 on the C-terminus.16 When Tyr394 is phosphorylated 
and Tyr505 is dephosphorylated, the fully activated enzyme 
can phosphorylate tyrosine residues within a special sequence 
called the immunoreceptor tyrosine activation motif (ITAM) 
located on the Z-chain of the TCR. This phosphorylation 

creates a docking site for its downstream substrate ZAP-70. 
Subsequent phosphorylation of ZAP-70 by LCK17,18 triggers 
a series of downstream cascade events that lead to mobili­
zation of intracellular calcium ion19 and activation of protein 
kinase C (PKC), a serine/threonine specific kinase.20,21 
Inhibitors of LCK may have potential therapeutic ability in 
the treatment of auto-immune diseases such as coxsackievirus 
B3-mediated heart diseases, rheumatoid arthritis, multiple 
sclerosis, lupus, as well as inflammatory diseases, prevention 
of solid organ transplantation and allergic diseases.22-24 There 
have been several reports of inhibitors of LCK. Much of the 
earlier work was on natural products and compounds deriv­
ed from them related to the nonselective tyrosine kinase 
inhibitors. Recently other inhibitors have been derived from 
the tyrphostins, quinazolines, pyrazolopyrimidine PP1, thia­
zole, benzothiazole, pyrido[2,3-d]pyridine inhibitors, which 
have potent activity against LCK.

The main aim of this study is to construct a pharmacophore 
model based on key chemical features of compounds with 
LCK inhibitory activity and then is to find the new lead 
candidate molecules through database searching using the 
pharmacophore model. In our earlier studies, the key chemical 
groups of benzothiazole analogs were extensively studied by 
using quantitative structure-activity relationships (QSAR) 
analysis methods and their binding modes were established 
by molecular docking studies.25 Unlike the previous QSAR 
study, which is based on single scaffold containing molecules, 
here we have collected compounds from the various 
scaffolds and have generated pharmacophore model that can 
provide a rational hypothetical picture of the primary chemical 
features responsible for activity. The best pharmacophore 
model is expected to provide useful knowledge for 
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developing new potentially active candidates targeting the 
P56 LCK.

Methods

Pharmacophore Model Development and Validation. 
Pharmacophore models were developed using a data set of 
different inhibitors for P56 LCK by using the CATALYST 
4.10 HypoGen module as there is, so far, no report on 
developing pharmacophore models using inhibitors for P56 
LCK. The CATALYST program,26 one of the leading auto­
mated drug design software was mainly used for the study 
since a large number of successful applications were clearly 
demonstrated in medicinal chemistry.27,28 This study is ex­
pected to provide useful knowledge for developing new 
inhibitors targeted to P56 LCK activity. The most important 
aspect of the hypothesis generation is the selection of the 
training set molecules. The training set must have structural 
diversity and wide coverage of activity range (4-6 orders of 
magnitude). To accomplish such a task we have collected 
and developed P56 LCK inhibitor database with biological 
activity data from various medicinal chemistry as well as life 

science journals using MDL ISIS/Base» Thus our LCK 
inhibitor in-house database comprises of 534 compounds 
with experimental activities.

Following the basic principles of training set selection, 25 
compounds30-39 were exquisitely chosen with their structures 
shown in Figure 1. Training and test set compounds taken 
from our in-house database were imported into CATALYST, 
and submitted for conformational analysis (max. number of 
conformers 250, generation type: best quality, energy range 
20 kcal/mol above the local minimized structure). Training 
set compounds were used for generating pharmacophore 
models. The resultant pharmacophore models revealed that 
the four chemical feature types such as hydrogen bond 
acceptor (HBA), hydrogen bond donor (HBD), hydrophobic 
aliphatic (HY-ALI) and ring aromatic (RA) features could 
effectively map all critical chemical features of all active 
molecules in the training and test sets.

The purpose of the pharmacophore hypothesis generation 
is not just to predict the activity of the training set com­
pounds accurately but also to verify whether the pharmaco­
phore models are capable of predicting the activity for any 
given compounds and classifying them correctly as active or 
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Figure 1. Molecular structures of 25 training set compounds.
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inactive. In order to validate our pharmacophore hypothesis, 
we have used a test set comprising of 178 molecules which 
had experimental P56 LCK inhibitory activity belonging to 
different activity ranges and structural classes (data not 
shown). It was further cross validated by Cat-Scramble pro­
gram available in CATALYST, which is based on Fischer’s 
randomization test. The procedure of this technique is to 
randomize the activity data associated with the training set 
compounds, and the randomized training sets are used to 
generate pharmacophore hypotheses using the same features 
and parameters as developed for the original pharmacophore 
hypothesis. If the randomized data set results in the genera­
tion of a pharmacophore with similar or better cost values, 
RMSD, and correlation, then the original hypothesis is 
considered to have been generated by chance.

Database Search for New Hits. The best ranked four 
featured pharmacophore model, Hypo1 was used as a search 
query to retrieve molecules with novel and desired chemical 
features from multi-conformational NCI chemical database 
consisting of 238,819 compounds available in CATALYST 
software. The Best Flexible Search Databases/Spread Sheets 
method in CATALYST was used to search the database for 
similar featured compounds.

M이ecular Docking An지yses. Biomolecular interactions 
and binding properties were analyzed for new hits that were 
obtained in the database search by using GOLD molecular 
docking. The program GOLD 3.0 (Genetic Optimisation for 
Ligand Docking) from Cambridge Crystallographic Data 
Center, UK,40 uses genetic algorithm for docking flexible 
ligands into protein binding sites. The ATP binding site, which 
was filled with ANP (phosphoaminophosphonic acidaden- 
late ester) in the X-ray structure (PDBID: 1QPC), was used 
to define active site region. Active site radius was taken as 
10.0 A around ANP molecule. The annealing parameter of 
van der Waals interaction and hydrogen bond interaction 
were 4.0 A and 2.5 A respectively.

Drug-like Property Calculation. Lipinski’s rule-of-five 
is a simple model to forecast the absorption and intestinal 
permeability of a compound.41 According to the rule, com­
pounds are considered likely to be well-absorbed when they 

possess LogP less than 5, molecular weight less than 500, 
number of H-bond donors less than 5, number H-bond 
acceptors less than 10, and number of rotatable bonds less 
than 10. All these properties were calculated using Molinspi- 
ration online database.42-43

Results and Discussion

A meaningful pharmacophore hypothesis may result when 
the difference between null and fixed cost value is large. The 
total cost of any pharmacophore hypothesis should be close 
to the fixed cost. The best significant pharmacophore hypo­
thesis should be characterized by the high cost difference, 
low root mean square deviation (RMSD) and must have the 
best correlation coefficient. In our study, all the ten hypo­
theses have the same features: HBA, HBD, HY-ALI and 
RA. The cost values, correlation coefficients (r) for training 
and test sets, RMSD, and pharmacophore features are listed 
in Table 1. The null cost and the fixed cost value of the ten 
best ranking hypotheses are 178.9, and 100.775 respectively. 
Configuration cost, a constant value preferably less than 17, 
describing the complexity of the hypotheses space to ex­
plore, is 15.56. The first hypothesis Hypo1 as shown in Figure 
2a, is characterized by highest cost difference (66.23), 
lowest RMSD value (0.933) and also with best correlation 
coefficient value (0.941), which represents a true correlation 
with good predictivity and henceforth has been suggested as 
the best pharmacophore hypothesis.

The experimental and estimated activities by the best 
pharmacophore hypothesis (Hypo1) for 25 training set com­
pounds are shown in Table 2. Training set compounds were 
classified relatively into three sets based on their activity 
values: highly active (+++, IC50 < 100 nM); moderately 
active (++, 1000 nM>IC50> 100 nM) and inactive (+, 
> 1000 nM). All highly active compounds (+++) were 
estimated correspondingly, four moderately active (++) 
compounds were estimated as highly active (+++) and all 
inactive molecules were estimated as inactive by Hypo1. 
Thus Hypo1 was able to estimate the activities of molecules 
in their own activity ranges. Compound 1, which is highly

Table 1. Information of statistical significance and predictive power presented in cost values measured in bits for top-ten hypotheses"

Hypothesis Total cost Cost difference 
(null-total cost) RMSD Correlation Features Correlation value for 

178 test set compounds

1 112.675 66.225 0.933 0.941 HBA, HBD, HY-ALI, RA 0.8768
2 116.066 62.834 1.065 0.922 HBA, HBD, HY-ALI, RA 0.8081
3 116.682 62.218 1.106 0.916 HBA, HBD, HY-ALI, RA 0.8470
4 117.340 61.560 1.105 0.916 HBA, HBD, HY-ALI, RA 0.8470
5 118.212 60.688 1.159 0.907 HBA, HBD, HY-ALI, RA 0.8300
6 118.819 60.081 1.127 0.914 HBA, HBD, HY-ALI, RA 0.8532
7 119.209 59.691 1.201 0.900 HBA, HBD, HY-ALI, RA 0.8231
8 119.732 59.168 1.225 0.895 HBA, HBD, HY-ALI, RA 0.8337
9 119.977 58.923 1.234 0.894 HBA, HBD, HY-ALI, RA 0.8398
10 120.035 58.865 1.210 0.898 HBA, HBD, HY-ALI, RA 0.8170

^Null cost of top-ten score hypotheses is 178.9 bits Fixed cost is 100.775 bits. Configuration cost is 15.56 bits. Abbreviation used for features: HBA 
(hydrogen-bond acceptor), HBD (hydrogen-bond donor); HY-ALI (hydrophobic aliphatic); RA (ring aromatic).
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Figure 2. Pharmacophore hypothesis with distance geometry (a), 
pharmacophore hypothesis mapping on compound 1 of training set 
(b), T24 of test set (c), T35 of test set (d), new compound 
NCI0310811 (e) and NCI0303873 (f). In hypothesis green repre­
sents H-bond acceptor (HBA), orange represents ring aromatic 
(RA), magenta represents H-bond donor (HBD) and light blue 
represents hydrophobic aliphatic (HY-ALI).

active compound in the training set has been mapped 
perfectly by Hypo1 with a fit value of 9.28 as shown in 
Figure 2b and was able to estimate its activity accurately as 
0.5 (experimental activity IC50 = 0.5 nM).

All molecules in the test set were built and conformational 
analysis was done similar to that of training set. Among 178 
test set compounds, 173 compounds had an error value < 10, 
representing a not more than one order difference between 
estimated and experimental activity. The 0.876 correlation 
coefficient achieved for the test set by using Hypo1 shows a 
good correlation between experimental and estimated activity. 
Correlation coefficient values for all 10 pharmacophores are 
shown in Table 1. The correlation graph between experi­
mental and estimated activities was shown in Figure 3. The 
mapping of validated model, Hypo1 on two compounds in 
the test set, compound T24 and T35 (IC50 = 8 and 70 nM 
respectively), are represented in Figure 2c and Figure 2d 
respectively. All the Hypo1 features overlapped with the 
chemical groups of these two compounds and thus this 
model accurately estimated the IC50 values as 10 and 71 nM 
respectively.

Another method to validate the quality of HypoGen hypo­
thesis is to apply cross validation using the Cat-Scramble 
program. The goal of this type of validation is to check 
whether there is a strong correlation between the chemical 
structures and the biological activity. The 19 spreadsheets 
were generated with 95% confidence level and the results of

Table 2. Experimental activity and estimated activity of training set molecules based on pharmacophore model Hypol

a+ indicates that the estimated IC50 is higher than the experimental IC50; - indicates that the estimated IC50 is lower than the experimental IC50. bFit 
value indicates how well the features in the pharmacophore overlap the chemical features in the molecule. cP56 LCK activity scale: +++, IC50 < 100 
nM (high active); ++, 100 nM < IC50 < 1000 nM (moderately active); +, > 1000 nM (inactive)

Compound 
No.

Experimental Activity 
(nM)

Estimated 
Activity Errora Fit Valueb Activity

Scalec
Est. Activity 

Scale
1 0.5 0.5 -1.0 9.28 +++ +++
2 2 2.6 1.3 8.56 +++ +++
3 2.4 3.9 1.6 8.38 +++ +++
4 4.3 19 4.4 7.70 +++ +++
5 9 13 1.5 7.85 +++ +++
6 9.4 72 7.6 7.12 +++ +++
7 18 81 4.5 7.07 +++ +++
8 30 73 2.4 7.11 +++ +++
9 60 85 1.4 7.05 +++ +++
10 70 87 1.2 7.04 +++ +++
11 70 85 1.2 7.05 +++ +++
12 84 69 -1.2 7.14 +++ +++
13 180 140 -1.3 6.84 ++ ++
14 280 68 -4.1 7.14 ++ +++
15 310 79 -3.9 7.08 ++ +++
16 330 70 -4.6 7.13 ++ +++
17 400 78 -5.2 7.08 ++ +++
18 460 380 -1.2 6.39 ++ ++
19 500 910 1.8 6.01 ++ ++
20 770 250 -3.1 6.58 ++ ++
21 2500 13000 5.3 4.86 + +
22 3200 1200 -2.6 5.89 + +
23 16000 23000 1.5 4.60 + +
24 50000 15000 -3.4 4.80 + +
25 100000 59000 -1.7 4.21 + +
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Figure 3. Correlation between experimental and Hypol estimated 
activities.

the runs are listed in Table 3. The data of cross validation 
clearly indicates that all values generated after randomi­
zation, produced hypotheses with no predictive value near to 
or similar to the original one. Out of the 19 runs, only one 
had a correlation close to 0.80, but the RMSD was high and 
total cost was close to the null cost, which is not desirable 
for an acceptable hypothesis. This cross validation also 
provided strong confidence on the initial pharmacophore 
model, Hypo1 and thus has been concluded as the best 
ranked pharmacophore hypothesis.

The best ranked validated pharmacophore model, Hypo1 
was used as a search query to retrieve molecules from 
chemical database. Activities were estimated by Hypo1 
which retrieved 9% hits from NCI chemical database. 
Among those, we have considered hits that showed less than 
5 nM of the estimated activity (657 hits) for further evalu­
ation. The mapping of Hypo1 on two hits found in NCI 
database search named as NCI0310811 and NCI0303873 are 
represented in Figure 2e and Figure 2f. The estimated 
activities for these two compounds are 0.42 nM and 0.55 nM 
with fit values of 9.352 and 9.238 respectively. Training set 
compounds as well as 657 new hits were docked into P56 
LCK ATP binding site using GOLD docking software. As 
the interacting ability of a compound depends on the fitness 
score (overall value representing van der Waals and electro­
static interactions), the greater the GOLD fitness score the 
better the binding ability. Hence fitness score of 50 was 
taken as cut-off for considering them for next step of filtra­
tion. Thus 203 hits were obtained which had with fitness 
score greater than 50.

We have analyzed drug-like properties based on Lipinski’s 
rule-of-five for these 203 compounds by using Molinspi- 
ration online database. According to the rule-of-five model, 
compounds are considered likely to be well absorbed when 
they possess LogP less than 5, molecular weight less than

Table 3. Results from cross-validation using Cat-Scramble in 
CATALYST a

Trail No. Total cost Fixed cost RMSD Correlation (r)
Results for unscrambled

112.675 100.775 0.933 0.941

1 165.611
Results for scrambled

95.237 2.372 0.507
2 177.196 95.728 2.540 0.388
3 134.007 97.571 1.642 0.806
4 151.695 96.160 2.090 0.652
5 152.017 98.375 2.068 0.660
6 156.822 97.176 2.138 0.637
7 173.173 93.145 2.530 0.395
8 159.561 96.547 2.243 0.580
9 156.129 93.180 2.196 0.613
10 160.064 96.436 2.255 0.574
11 137.457 97.565 1.735 0.779
12 147.727 95.461 2.011 0.686
13 162.605 95.471 2.280 0.570
14 175.504 96.851 2.497 0.423
15 164.921 94.860 2.364 0.513
16 138.050 98.651 1.736 0.778
17 157.091 94.116 2.228 0.590
18 147.440 97.934 1.987 0.692
19 159.843 97.512 2.232 0.585

"Null cost= 178.9

500, number of H-bond donors less than 5, and number H- 
bond acceptors less than 10. We have also confined the 
number of rotatable bonds not to exceed 10. Reduced mole­
cular flexibility, as measured by the number of rotatable 
bonds and total H-bond count (sum of donors and acceptors) 
are found to be important predictors of good oral bioavail­
ability. Drug-like properties of the each compound can be 
calculated based upon the structure and therefore SMILES 
(Simplified Molecular Input Line Entry System) were gener­
ated for the 203 hits using ISIS/ConSystant program and 
were used as an input into Molinspiration database which 
gives information about miLogP, molecular weight, number 
of H-bond donors, acceptors and rotatable bonds. Finally 68 
compounds have satisfied all the physiological properties to 
be an ideal lead molecule. Thus these compounds have satis­
fied all the above three filtering methods of good predictive 
activity, good docking scores and also drug like properties.

We have analyzed docking results of highly active com­
pound in training set, two test set compounds and two highly 
estimated active compounds from the database search. Three 
H-bond interactions, two with Met319 and other with Thr316 
formed by all the above mentioned compounds as shown in 
Figure 4 are considered to be crucial for inhibitory activity. 
The two hits NCI0310811 and NCI0303873 are adenosine 
derivatives. The amino group of amide in training and test 
set compounds act as an H-bond donor to the oxygen of 
Thr316 as shown in Figure 4. Pharmacophore mapping as 
shown in Figure 2 indicates that the amino group of amide 
acts as HBD. In the case of adenosine derivatives the 5'-OH
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Figure 4. Molecular docking of training set compound 1 (a), test set T24 (b), T35 (c) New compound NCI0310811 (d) and NCI0303873 (e) 
aligned ligands (f) at P56 LCK ATP binding site.

of ribose ring is acting as H-bond acceptor from the hydrox­
yl group of Thr316 while the amino group is acting as H- 
bond donor to the Met319 carbonyl group. Pharmacophore 
mapping also presented similar feature mapping for these 
adenosine derivatives. Adenosine derivatives were substrate 
analogues as ATP is the substrate at the P56 LCK ATP 
binding site. Our training set compounds had no adenosine 
analogues and it is surprising to know that the pharmaco­
phore model was able to retrieve adenosine derivatives 
based on the validated pharmacophore model features.

Conclusions

For P56 LCK inhibitor dentification, a reliable pharmaco­
phore model with four crucial features HBA, HBD, HY-ALI 
and RA which could identify and differentiate active from 
inactive compounds was developed. The model was vali­
dated with 178 test set compounds and also by Cat-Scramble 
method. In drug design process identifying compounds with 
good inhibitory activity is the crucial and basic step. The 
validated pharmacophore was used to retrieve new com­
pounds with estimated inhibitory activity in nanomolar 
range from NCI database. New compounds were refined and 
identified by the following two additional filtering methods: 
molecular docking and drug-like property check. Molecular 
docking score determines whether the pharmacophore 
retrieved new compounds bind to the active site residues of 
the target similar to the experimentally proved inhibitors. 
This molecular docking filtering method plays crucial role 
as compounds with good dock scores as well as interactions 
with crucial amino acids were considered as cutoff to 
eliminate compounds which lacked such properties. Drug­
like properties like molecular weight, LogP, number of H- 
bond donors, H-bond acceptors, and molecule flexibility 
measured as rotatable bonds were evaluated to ensure proper 
physiological properties. The second filtering method helps 
us to eliminate compounds which though have good 
estimated inhibitory and binding properties lack the essential 

property to be a candidate molecule. We have identified 68 
new compounds with better estimated activity, good 
calculated binding properties and also favorable drug-like 
properties based on Hypo1 from NCI database consisting of 
238,819 compounds. Among 68 compounds interestingly few 
adenosine derivatives were found. This can be possible as the 
pharmacophore model features complement the P56 LCK 
ATP binding site. Thus, the validity of the pharmacophore 
model could be substantiated as it could retrieve adenosine 
derivatives although no such compounds were included in 
the training set. Therefore our pharmacophore hypothesis is 
reliable and is able to predict new compounds with good 
estimated activity from any chemical database. Thus, among 
the final 68 compounds few may have good in vitro P56 
LCK inhibitory activity.

Acknowledgments. Nagakumar Bharatham and Kavitha 
Bharatham were recipients of fellowships from the BK21 
Programs. This work was supported by grants from the 
MOST/KOSEF for the Environmental Biotechnology National 
Core Research Center (grant #: R15-2003-012-02001-0) and 
for the Basic Research Program (grant #: R01-2005-000- 
10373-0).

References

1. Sridhar, R.; Hanson-Painton, O.; Cooper, D. R. Pharm. Res. 2000, 
17, 1345.

2. Isakov, N.; Biesinger, B. Eur J. Biochem. 2000, 267,3413.
3. Levitzki, A. Pharmacol. Ther 1999, 82, 231.
4. Aaronson, S. A. Science 1991, 254,1146.
5. Neet, K.; Hunter, T. Genes Cells 1996, 1, 147.
6. Robinson, D. R.; Wu, Y M.; Lin, S. F. Oncogene 2000, 19, 5548.
7. Schweimer, K.; Hoffmann, S.; Bauer, F.; Friedrich, U.; Kardinal,

C.;  Feller, S. M.; Biesinger, B.; Sticht, H. Biochemistry 2002, 41, 
5120.

8. Marth, J. D.; Peet, R.; Krebs, E. G.; Perlmutter, R. M. Cell 1985, 
43, 393.

9. Voronova, A. F.; Sefton, B. M. Nature 1986, 319,682.
10. Veillette, A.; Abraham, N.; Caron, L.; Davidson, D. Semin.



206 Bull. Korean Chem. Soc. 2007, Vol. 28, No. 2 Nagakumar Bharatham et al.

19.
20.
21.

22.

Immunol. 1991, 3,143.
11. Biondi, A.; Paganin, C.; Rossi, V; Benvestito, S.; Perlmutter, R.

M. ; Mantovani, A.; Allavena, P. Eur J. Immunol. 1991, 21, 843.
12. Bolen, J. B.; Brugge, J. S. Annu. Rev. Immunol. 1997, 15, 371.
13. Trevillyan, J. M.; Chiou, X. G.; Ballaron, S. J.; Tang, Q. M.; Buko, 

A.; Sheets, M. P.; Smith, M. L.; Putman, C. B.; Wiedeman, P.; Tu,
N. ; Madar, D.; Smith, H. T.; Gubbins, E. J.; Warrior, U. P.; Chen, 
Y W.; Mollison, K. W.; Faltynek, C. R.; Djuric, S. W. Arch. 
Biochem. Biophys. 1999, 364, 19.

14. Palacios, E. H.; Weiss, A. Oncogene 2004, 23, 7990.
15. Vang, T.; Abrahamsen, H.; Myklebust, S.; Enserink, J.; Prydz, H.; 

Mustelin, T.; Amarzguioui, M.; Tasken, K. Eur J. Immunol. 2004, 
34, 2191.

16. Johnson, L. N.; Noble, M. E.; Owen, D. J. Cell 1996, 85,149.
17. Neumeister, E. N.; Zhu, Y.; Richard, S.; Terhorst, C.; Chan, A. C.; 

Shaw, A. S. Mol. Cell. Biol. 1995, 15,3171.
18. Chan, A. C.; Dalton, M.; Johnson, R.; Kong, G H.; Wang, T.; 

Thoma, R.; Kurosaki, T. EMBO J. 1995, 14,2499.
Trobridge, P. A.; Levin, S. D. Eur. J. Immunol. 2001, 31, 3567. 
Kikkawa, U.; Nishizuka, Y. A. Rev. Cell. Biol. 1986, 2, 149.
Isakov, N.; Mally, M. I.; Scholz, W.; Altman, A. Immunol. Rev. 
1987, 95, 89.
Liu, P.; Aitken, K.; Kong, Y. Y.; Opavsky, M. A.; Martino, T.; 
Dawood, F.; Wen, W. H.; Kozieradzki, I.; Bachmaier, K.; Straus,
D.;  Mak, T. W.; Penninger, J. M. Nat. Med. 2000, 6, 429.

23. Llinas-Brunet, M.; Beaulieu, P. L.; Cameron, D. R.; Ferland, J.- 
M.; Gauthier, J.; Ghiro, E.; Gillard, J.; Gorys, V.; Poirier, M.; 
Rancourt, J.; Wernic, D.; Betageri, R.; Cardozo, M.; Jakes, S.; 
Lukas, S.; Patel, U.; Proudfoot, J.; Moss, N. J. Med. Chem. 1999, 
42, 722.

24. Hanke, J. H.; Pollok, B. A.; Changelian, P. S. Inflamm. Res. 1995, 
44, 357.

25. Bharatham, N.; Bharatham, K.; Lee, K. W. Bull. Korean Chem. 
Soc. 2006, 27, 266.

26. CATALYST4.10 User Guide; Accelrys Inc.: San Diego, CA, USA, 
2005.

27. Bharatham, N.; Bharatham, K.; Lee, K. W. J. Mol. Graph. Model. 
doi:10.1016/j.jmgm.2006.08.002.

28. Kahnberg, P.; Howard, M. H.; Liljefors, T.; Nielsen, M.; Nielsen,
E. O.; Sterner, O.; Pettersson, I. J. Mol. Graph. Model. 2004, 23, 
253.

29. Shen, J. J. Chem. Inf- Comput. Sci. 2003, 43, 1668.
30. Chen, P.; Norris, D.; Iwanowicz, E. J.; Spergel, S. H.; Lin, J.; Gu, 

H. H.; Shen, Z.; Wityak, J.; Lin, T. A.; Pang, S.; De Fex, H. F.; 
Pitt, S.; Shen, D. R.; Doweyko, A. M.; Bassolino, D. A.; Roberge, 
J. Y.; Poss, M. A.; Chen, B. C.; Schieven, G. L.; Barrish, J. C. 
Bioorg. Med. Chem. Lett. 2002, 12, 1361.

31. Chen, P; Iwanowicz, E. J.; Norris, D.; Gu, H. H.; Lin, J.; Moquin,
R. V.; Das, J.; Wityak, J.; Spergel, S. H.; de Fex, H.; Pang, S.; Pitt,
S. ; Shen, D. R.; Schieven, G. L.; Barrish, J. C. Bioorg. Med. Chem. 
Lett. 2002, 12, 3153.

32. Das, J.; Lin, J.; Moquin, R. V.; Shen, Z.; Spergel, S. H.; Wityak, J.; 
Doweyko, A. M.; DeFex, H. F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, 
D. R.; Schieven, G. L.; Barrish, J. C. Bioorg. Med. Chem. Lett. 
2003, 13, 2145.

33. Das, J.; Moquin, R. V.; Lin, J.; Liu, C.; Doweyko, A. M.; DeFex, 
H. F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; 
Barrish, J. C.; Wityak, J. Bioorg. Med. Chem. Lett. 2003, 13, 2587.

34. Wityak, J.; Das, J.; Moquin, R. V.; Shen, Z.; Lin, J.; Chen, P.; 
Doweyko, A. M.; Pitt, S.; Pang, S.; Shen, D. R.; Fang, Q.; de Fex, 
H. F.; Schieven, G. L.; Kanner, S. B.; Barrish, J. C. Bioorg. Med. 
Chem. Lett. 2003, 13, 4007.

35. Myers, M. R.; Setzer, N. N.; Spada, A. P.; Zulli, A. P.; Hsu, C.-Y. 
J.; Zilberstein, A.; Johnson, S. E.; Hook, L. E.; Jacoski, M. V. 
Bioorg. Med. Chem. Lett. 1997, 7, 417.

36. Thakkar, K.; Geahlen, R. L.; Cushman, M. J. Med. Chem. 1993, 
36, 2950.

37. Burke, T. R. Jr.; Lim, B.; Marquez, V. E.; Li, Z. H.; Bolen, J. B.; 
Stefanova, I.; Horak, I. D. J. Med. Chem. 1993, 36, 425.

38. Snow, R. J.; Cardozo, M. G.; Morwick, T. M.; Busacca, C. A.; 
Dong, Y.; Eckner, R. J.; Jacober, S.; Jakes, S.; Kapadia, S.; Lukas, 
S.; Panzenbeck, M.; Peet, G. W.; Peterson, J. D.; Prokopowicz, A. 
S.; Sellati, R.; Tolbert, R. M.; Tschantz, M. A.; Moss, N. J. Med. 
Chem. 2002, 45, 3394.

39. Goldberg, D. R.; Butz, T.; Cardozo, M. G.; Eckner, R. J.; 
Hammach, A.; Huang, J.; Jakes, S.; Kapadia, S.; Kashem, M.; 
Lukas, S.; Morwick, T. M.; Panzenbeck, M.; Patel, U.; Pav, S.; 
Peet, G. W.; Peterson, J. D.; Prokopowicz, A. S.; Snow, R. J.; 
Sellati, R.; Takahashi, H.; Tan, J.; Tschantz, M. A.; Wang, X. J.; 
Wang, Y.; Wolak, J.; Xiong, P.; Moss, N. J. Med. Chem. 2003, 46, 
1337.

40. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. 
Biol. 1997, 267, 727.

41. Ertl, P; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714.
42. Irwin, J. J.; Shoichet, B. K. J. Chem. Inf. Model. 2005, 45, 177.
43. Lipinski, C. A. J. Pharmacol. Toxicol. Methods 2000, 44, 235.


