DOI QR코드

DOI QR Code

P56 LCK Inhibitor Identification by Pharmacophore Modelling and Molecular Docking

  • Bharatham, Nagakumar (Department of Biochemistry, Division of Applied Life Science, Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University) ;
  • Bharatham, Kavitha (Department of Biochemistry, Division of Applied Life Science, Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University) ;
  • Lee, Keun-Woo (Department of Biochemistry, Division of Applied Life Science, Environmental Biotechnology National Core Research Center (EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University)
  • Published : 2007.02.20

Abstract

Pharmacophore models for lymphocyte-specific protein tyrosine kinase (P56 LCK) were developed using CATALYST HypoGen with a training set comprising of 25 different P56 LCK inhibitors. The best quantitative pharmacophore hypothesis comprises of one hydrogen bond acceptor, one hydrogen bond donor, one hydrophobic aliphatic and one ring aromatic features with correlation coefficient of 0.941, root mean square deviation (RMSD) of 0.933 and cost difference (null cost-total cost) of 66.23. The pharmacophore model was validated by two methods and the validated model was further used to search databases for new compounds with good estimated LCK inhibitory activity. These compounds were evaluated for their binding properties at the active site by molecular docking studies using GOLD software. The compounds with good estimated activity and docking scores were evaluated for physiological properties based on Lipinski's rules. Finally 68 compounds satisfied all the properties required to be a successful inhibitor candidate.

Keywords

References

  1. Sridhar, R.; Hanson-Painton, O.; Cooper, D. R. Pharm. Res. 2000, 17, 1345
  2. Isakov, N.; Biesinger, B. Eur. J. Biochem. 2000, 267, 3413 https://doi.org/10.1046/j.1432-1327.2000.01412.x
  3. Levitzki, A. Pharmacol. Ther. 1999, 82, 231 https://doi.org/10.1016/S0163-7258(98)00066-7
  4. Aaronson, S. A. Science 1991, 254, 1146 https://doi.org/10.1126/science.1659742
  5. Neet, K.; Hunter, T. Genes Cells 1996, 1, 147 https://doi.org/10.1046/j.1365-2443.1996.d01-234.x
  6. Robinson, D. R.; Wu, Y. M.; Lin, S. F. Oncogene 2000, 19, 5548 https://doi.org/10.1038/sj.onc.1203957
  7. Schweimer, K.; Hoffmann, S.; Bauer, F.; Friedrich, U.; Kardinal, C.; Feller, S. M.; Biesinger, B.; Sticht, H. Biochemistry 2002, 41, 5120 https://doi.org/10.1021/bi015986j
  8. Marth, J. D.; Peet, R.; Krebs, E. G.; Perlmutter, R. M. Cell 1985, 43, 393 https://doi.org/10.1016/0092-8674(85)90169-2
  9. Voronova, A. F.; Sefton, B. M. Nature 1986, 319, 682 https://doi.org/10.1038/319682a0
  10. Veillette, A.; Abraham, N.; Caron, L.; Davidson, D. Semin. Immunol. 1991, 3, 143
  11. Biondi, A.; Paganin, C.; Rossi, V.; Benvestito, S.; Perlmutter, R. M.; Mantovani, A.; Allavena, P. Eur. J. Immunol. 1991, 21, 843 https://doi.org/10.1002/eji.1830210348
  12. Bolen, J. B.; Brugge, J. S. Annu. Rev. Immunol. 1997, 15, 371 https://doi.org/10.1146/annurev.immunol.15.1.371
  13. Trevillyan, J. M.; Chiou, X. G.; Ballaron, S. J.; Tang, Q. M.; Buko, A.; Sheets, M. P.; Smith, M. L.; Putman, C. B.; Wiedeman, P.; Tu, N.; Madar, D.; Smith, H. T.; Gubbins, E. J.; Warrior, U. P.; Chen, Y. W.; Mollison, K. W.; Faltynek, C. R.; Djuric, S. W. Arch. Biochem. Biophys. 1999, 364, 19 https://doi.org/10.1006/abbi.1999.1099
  14. Palacios, E. H.; Weiss, A. Oncogene 2004, 23, 7990 https://doi.org/10.1038/sj.onc.1208074
  15. Vang, T.; Abrahamsen, H.; Myklebust, S.; Enserink, J.; Prydz, H.; Mustelin, T.; Amarzguioui, M.; Tasken, K. Eur. J. Immunol. 2004, 34, 2191 https://doi.org/10.1002/eji.200425036
  16. Johnson, L. N.; Noble, M. E.; Owen, D. J. Cell 1996, 85, 149 https://doi.org/10.1016/S0092-8674(00)81092-2
  17. Neumeister, E. N.; Zhu, Y.; Richard, S.; Terhorst, C.; Chan, A. C.; Shaw, A. S. Mol. Cell. Biol. 1995, 15, 3171
  18. Chan, A. C.; Dalton, M.; Johnson, R.; Kong, G. H.; Wang, T.; Thoma, R.; Kurosaki, T. EMBO J. 1995, 14, 2499
  19. Trobridge, P. A.; Levin, S. D. Eur. J. Immunol. 2001, 31, 3567 https://doi.org/10.1002/1521-4141(200112)31:12<3567::AID-IMMU3567>3.0.CO;2-M
  20. Kikkawa, U.; Nishizuka, Y. A. Rev. Cell. Biol. 1986, 2, 149 https://doi.org/10.1146/annurev.cb.02.110186.001053
  21. Isakov, N.; Mally, M. I.; Scholz, W.; Altman, A. Immunol. Rev. 1987, 95, 89 https://doi.org/10.1111/j.1600-065X.1987.tb00501.x
  22. Liu, P.; Aitken, K.; Kong, Y. Y.; Opavsky, M. A.; Martino, T.; Dawood, F.; Wen, W. H.; Kozieradzki, I.; Bachmaier, K.; Straus, D.; Mak, T. W.; Penninger, J. M. Nat. Med. 2000, 6, 429 https://doi.org/10.1038/74689
  23. Llinas-Brunet, M.; Beaulieu, P. L.; Cameron, D. R.; Ferland, J.-M.; Gauthier, J.; Ghiro, E.; Gillard, J.; Gorys, V.; Poirier, M.; Rancourt, J.; Wernic, D.; Betageri, R.; Cardozo, M.; Jakes, S.; Lukas, S.; Patel, U.; Proudfoot, J.; Moss, N. J. Med. Chem. 1999, 42, 722
  24. Hanke, J. H.; Pollok, B. A.; Changelian, P. S. Inflamm. Res. 1995, 44, 357 https://doi.org/10.1007/BF01797862
  25. Bharatham, N.; Bharatham, K.; Lee, K. W. Bull. Korean Chem. Soc. 2006, 27, 266 https://doi.org/10.5012/bkcs.2006.27.2.266
  26. CATALYST 4.10 User Guide; Accelrys Inc.: San Diego, CA, USA, 2005
  27. Bharatham, N.; Bharatham, K.; Lee, K. W. J. Mol. Graph. Model. doi:10.1016/j.jmgm.2006.08.002
  28. Kahnberg, P.; Howard, M. H.; Liljefors, T.; Nielsen, M.; Nielsen, E. O.; Sterner, O.; Pettersson, I. J. Mol. Graph. Model. 2004, 23, 253 https://doi.org/10.1016/j.jmgm.2004.06.003
  29. Shen, J. J. Chem. Inf. Comput. Sci. 2003, 43, 1668 https://doi.org/10.1021/ci034067s
  30. Chen, P.; Norris, D.; Iwanowicz, E. J.; Spergel, S. H.; Lin, J.; Gu, H. H.; Shen, Z.; Wityak, J.; Lin, T. A.; Pang, S.; De Fex, H. F.; Pitt, S.; Shen, D. R.; Doweyko, A. M.; Bassolino, D. A.; Roberge, J. Y.; Poss, M. A.; Chen, B. C.; Schieven, G. L.; Barrish, J. C. Bioorg. Med. Chem. Lett. 2002, 12, 1361 https://doi.org/10.1016/S0960-894X(02)00191-9
  31. Chen, P.; Iwanowicz, E. J.; Norris, D.; Gu, H. H.; Lin, J.; Moquin, R. V.; Das, J.; Wityak, J.; Spergel, S. H.; de Fex, H.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C. Bioorg. Med. Chem. Lett. 2002, 12, 3153 https://doi.org/10.1016/S0960-894X(02)00677-7
  32. Das, J.; Lin, J.; Moquin, R. V.; Shen, Z.; Spergel, S. H.; Wityak, J.; Doweyko, A. M.; DeFex, H. F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C. Bioorg. Med. Chem. Lett. 2003, 13, 2145 https://doi.org/10.1016/S0960-894X(03)00380-9
  33. Das, J.; Moquin, R. V.; Lin, J.; Liu, C.; Doweyko, A. M.; DeFex, H. F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C.; Wityak, J. Bioorg. Med. Chem. Lett. 2003, 13, 2587 https://doi.org/10.1016/S0960-894X(03)00511-0
  34. Wityak, J.; Das, J.; Moquin, R. V.; Shen, Z.; Lin, J.; Chen, P.; Doweyko, A. M.; Pitt, S.; Pang, S.; Shen, D. R.; Fang, Q.; de Fex, H. F.; Schieven, G. L.; Kanner, S. B.; Barrish, J. C. Bioorg. Med. Chem. Lett. 2003, 13, 4007 https://doi.org/10.1016/j.bmcl.2003.08.054
  35. Myers, M. R.; Setzer, N. N.; Spada, A. P.; Zulli, A. P.; Hsu, C.-Y. J.; Zilberstein, A.; Johnson, S. E.; Hook, L. E.; Jacoski, M. V. Bioorg. Med. Chem. Lett. 1997, 7, 417
  36. Thakkar, K.; Geahlen, R. L.; Cushman, M. J. Med. Chem. 1993, 36, 2950 https://doi.org/10.1021/jm00072a015
  37. Burke, T. R. Jr.; Lim, B.; Marquez, V. E.; Li, Z. H.; Bolen, J. B.; Stefanova, I.; Horak, I. D. J. Med. Chem. 1993, 36, 425 https://doi.org/10.1021/jm00056a001
  38. Snow, R. J.; Cardozo, M. G.; Morwick, T. M.; Busacca, C. A.; Dong, Y.; Eckner, R. J.; Jacober, S.; Jakes, S.; Kapadia, S.; Lukas, S.; Panzenbeck, M.; Peet, G. W.; Peterson, J. D.; Prokopowicz, A. S.; Sellati, R.; Tolbert, R. M.; Tschantz, M. A.; Moss, N. J. Med. Chem. 2002, 45, 3394 https://doi.org/10.1021/jm020113o
  39. Goldberg, D. R.; Butz, T.; Cardozo, M. G.; Eckner, R. J.; Hammach, A.; Huang, J.; Jakes, S.; Kapadia, S.; Kashem, M.; Lukas, S.; Morwick, T. M.; Panzenbeck, M.; Patel, U.; Pav, S.; Peet, G. W.; Peterson, J. D.; Prokopowicz, A. S.; Snow, R. J.; Sellati, R.; Takahashi, H.; Tan, J.; Tschantz, M. A.; Wang, X. J.; Wang, Y.; Wolak, J.; Xiong, P.; Moss, N. J. Med. Chem. 2003, 46, 1337 https://doi.org/10.1021/jm020446l
  40. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 727 https://doi.org/10.1006/jmbi.1996.0897
  41. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714 https://doi.org/10.1021/jm000942e
  42. Irwin, J. J.; Shoichet, B. K. J. Chem. Inf. Model. 2005, 45, 177 https://doi.org/10.1021/ci049714+
  43. Lipinski, C. A. J. Pharmacol. Toxicol. Methods 2000, 44, 235 https://doi.org/10.1016/S1056-8719(00)00107-6

Cited by

  1. Molecular docking guided 3D-QSAR CoMFA analysis of N-4-Pyrimidinyl-1H-indazol-4-amine inhibitors of leukocyte-specific protein tyrosine kinase vol.14, pp.10, 2008, https://doi.org/10.1007/s00894-008-0334-8
  2. QM/QM docking method based on the variational finite localized molecular orbital approximation vol.30, pp.5, 2009, https://doi.org/10.1002/jcc.21100
  3. Adenosine Kinase Inhibitor Design Based on Pharmacophore Modeling vol.28, pp.4, 2007, https://doi.org/10.5012/bkcs.2007.28.4.561
  4. QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1 vol.29, pp.3, 2008, https://doi.org/10.5012/bkcs.2008.29.3.647
  5. SVM Model for Virtual Screening of Lck Inhibitors vol.49, pp.4, 2007, https://doi.org/10.1021/ci800387z
  6. Nitriles in Organic Synthesis: Synthesis of New Benzothiazole Derivatives of Biological Interest vol.185, pp.2, 2007, https://doi.org/10.1080/10426500902812498
  7. Molecular Docking Study of Aminoacyl-tRNA Synthetases with Ligand Molecules from Four Different Scaffolds vol.31, pp.3, 2010, https://doi.org/10.5012/bkcs.2010.31.03.606
  8. Pharmacophore Identification for Peroxisome Proliferator-Activated Receptor Gamma Agonists vol.32, pp.1, 2007, https://doi.org/10.5012/bkcs.2011.32.1.201