• Title/Summary/Keyword: Copper surface

Search Result 1,366, Processing Time 0.027 seconds

Effect of Copper on the Growth and Methanol Dehydrogenase Activity of Methylobacillus sp. Strain SK1 DSM 8269

  • Kim, Si W.;Kim, Young M.
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.172-178
    • /
    • 1996
  • Methylobacillus sp. strain SK1, which grows only on methanol, was found to grow in the absence of added copper. The doubling time (t$_{d}$ = 1.3 h) of the bacterium growing at the exponential growth phase at 30.deg.C in the absence of copper was the same as that of the cell growing in the presence of copper. The bacterium growing after the exponential phase in the absence of copper, however, grew faster than the cell growing in the presence of copper. Cells harvested after thee arly stationary phase in the presence of copper were found to exhibit no methanol dehydrogenase (MDH) activity, but the amount and subunit structure of the enzyme in the cells were almost the same as that in cells harboring active MDH. Pellets of the cells harvested after the early stationary phase in the presence of copper were pale green. Cell-free extracts prepared from cells harvested at the early stationary phase in the presence of copper were pink and exhibited MDH activity, but it turned dark-green rapidly from the surface under air. The green-colored portions of the extracts showed no MDH activity and contained c-type cytochromes that were oxidized completely. The inactive MDH activity and contained c-type cytochromes that were oxidized completely. The inactive MDH proteins in the green portions were found to have antigenic sites identical to those of the active one as the inactive MDHs in cells grown in the presence of copper. The bacterium was found to accumulate copper actively during the exponential growth phase. MDH prepared from cells grown in the presence or absence of copper was found to be more stable under nitrogen gas than under air. Methanol at 10 mM was found to enhance the stability of the MDH under air.r.

  • PDF

Thermal Heating Characteristics of Electroless Cu-Plated Graphite Fibers (무전해 구리도금 된 흑연 섬유의 발열 특성)

  • Lee, Kyeong Min;Kim, Min-Ji;Lee, Sangmin;Yeo, Sang Young;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.264-269
    • /
    • 2017
  • To improve heating characteristics of graphite fibers, graphite fibers were copper-plated by electroless plating. The Cu-plated graphite fibers were investigated by thermos-gravimetric analysis in air to calculate quantities of copper on surface of graphite fiber according to plating time. Also, the surface temperature with applied voltage was observed by thermos-graphic camera using a strand of graphite fiber. According to the increment of plating time, the higher quantities of plated copper on graphite fiber were obtained. The electric conductivity of plated graphite fiber for 20 minutes was resulted in 1594.3 S/cm, and surface temperature of this sample showed the maximum temperature $57.2^{\circ}C$. These result could be attributed that copper having great electric conductivity are growing on graphite fiber and followed improving heating characteristics.

Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate (이성분계 실란 커플링제의 가수분해속도 조절에 의한 2-FCCL의 접착특성 변화 연구)

  • Park, U-Joo;Park, Jin-Young;Kim, Jin-Young;Kim, Yong-Seok;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.302-307
    • /
    • 2011
  • The parameters of silanol formation reaction of organosilane including solvent type, solution concentration, pH and hydrolysis time influence the adhesion property of 2 layer flexible copper clad laminate (FCCL). Especially, the hydrolysis reaction time of silane coupling agent affects the formation of the silanol groups and their self-condensation to generate oilgomeric structure to enhance the surface treatment as an adhesive promoter. In our study, we prepared the binary silane coupling agents to control hydrolysis reaction rate and surface energy after treatment of silane coupling agents for increasing the adhesive property between a copper layer and a polyimide layer. The surface morphology of rolled copper foil, as a function of the contents of the coated binary silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by hydrolysis rate and surface energy.

Atomic Absorption Spectrophotometric Analysis of Copper In the Soil s of Orchards (원자흡광법(原字吸光法)에 의(依)한 과수원(果樹園) 토양중(土壤中)의 동함량(銅含量) 분석(分析)에 관(關)한 연구(硏究))

  • Park, Seung Heui
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.1
    • /
    • pp.52-58
    • /
    • 1980
  • This study was conducted to detect copper which is considered in the soils of orchards, since copper fungicide has been applied to fruit trees. Soil samples taken from the fields of the chief producing districts of apple (Chungju, Yesan, Daegu), pear (Yangju, Bucheon, Seonghwan) and citrus (Seogypo in Jeju island) were analysed by an atomic absorption spectrophotometer. The results obtained were summarized as follows ; 1. In orchards of apple, the amount of copper of soils from Yesan, Chungju and Daegu were ranged 2.6-171.3ppm, 2.2-136.1ppm and 14.3-134.6ppm, respectively. Very little copper was detected from the soils in the field which has been cultivated for less than 20 years. About 100ppm and 130-170ppm of copper were detected in the field which has been cultivated for 30 years and for 50-60 years, respectively. Most of the copper was detected in the surface layer of soils (0-10cm), while very low content of copper was detected in the deeper layer of soils (10-20cm). 2. In orchards of pear, 20-30ppm of copper was detected from the surface of soils in the field which has been cultivated for more than 30 years and the highest level of copper, 36.8ppm, was detected from Yangju area. The amount of copper of soils from Yangju, Seonghwan and Bucheon were ranged 3.6-36.8ppm, 9.7-19.4ppm and 3.6-24.7ppm, respectively. 3. In orchards of citrus of Jeju island, only trace amount and 23-38ppm of copper were detected in the fields cultivated for 15 years and 20-30 years, respectively. The highest level of copper, 57ppm, was detected from the surface layer of soils in the field which has been cultivated for 35 years, but in most of the soil samples tested, only the natural background level of copper, about 20ppm, was detected. 4. The levels of copper residue in all the soil samples tested were lower than the tolerance level (125ppm of copper which is extracted in 0.1N-HCl solution), except those of copperr residue, 130-170ppm, that were detected from the orchards of apple which have been under cultivation for 50-60 years. Hence no problem for the farming could be speculated with the present concentration of copper analysed.

  • PDF

Chloride Ion Effects on Anodic Dissolution of Copper in Aqueous NaCl Solutions under Argon Atmosphere (아르곤 분위기의 NaCl 수용액에서 구리의 산화 용해반응에 미치는 염화이온의 영향)

  • Chon, Jung-Kyoon;Kim, Youn-Kyoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.159-164
    • /
    • 2008
  • We investigated chloride ion effects on anodic dissolution of copper using potentiodynamic method, cyclic voltammtery, chronoamperometry and chronocoulometry. The anodic dissolution reaction of copper in NaCl solution under argon atmosphere is $Cu+2Cl^{-}{\rightleftharpoons}{CuCl_2}^{-}+e^-$ and chloride ion adsorption process in copper surface can be explained by Temkin isotherm.

Electromigration-induced void evolution in upper and lower layer dual-inlaid Copper interconnect structures

  • Pete, D.J.;Mhaisalkar, S.G.;Helonde, J.B.;Vairagar, A.V.
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.109-113
    • /
    • 2012
  • Electromigration-induced void evolutions in typical upper and lower layer dual-inlaid Copper (Cu) interconnect structures were simulated by applying a phenomenological model resorting to Monte Carlo based simulations, which considers redistribution of heterogeneously nucleated voids and/or pre-existing vacancy clusters at the Copper/dielectric cap interface during electromigration. The results indicate that this model can qualitatively explain the electromigration-induced void evolutions observations in many studies reported by several researchers heretofore. These findings warrant need to re-investigate technologically important electromigration mechanisms by developing rigorous models based on similar concepts.

Growth of Graphene on Electro-polished Copper Foil by Thermal CVD

  • Jin, Xiaozhan;Kim, Sung-Jin;Seo, Eun-Kyoung;Boo, Doo-Wan;Lee, Jung-Ah;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.410-410
    • /
    • 2012
  • The continuous monolayer graphene was synthesized on electro-polished copper foil. Electro-polishing sticks off the coating layer of copper foil, which prevents the continuous graphene growth. The quality of continuous graphene is dependent on roughness of copper foil. Copper foil roughness could be controlled by changing polishing condition. The effects of working voltage (4-6 V) and time (30-70 sec) for electro-polishing were systematically examined. The change of surface roughness was checked with AFM.

  • PDF

Investigation of Deep Drawability and Product Qualities of Ultra Thin Beryllium Copper Sheet Metal (베릴륨동 극박판의 드로잉 성형성과 품질특성 연구)

  • Park, S.S.;Hwang, K.B.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • The present study is focused on the deep drawability and product qualities of ultra thin beryllium copper sheet metal. The goal of this research is to investigate the limit drawing ratio in deep drawing of ultra thin beryllium copper metal. For the experiment, beryllium copper(C1720, $50{\mu}m$ in thickness) is used. Tensile test are also carried out to find out the material properties. Deep drawing experiments are carried out in Universal Testing Machine(UTM) to obtain limit drawing ratio. Deep drawing tests are carried out for various specimen sizes. Teflon film is used as a lubricant and constant blank holding force is imposed. Sheet thickness and surface hardness are measured along radial direction after deep drawing. Thickness is measured using optical microscope. For beryllium copper(C1720), the maximum LDR of 2.4 is obtained when the die shoulder radius is 20 or 30 times of sheet thickness.

Inhibition Effect of a Few Amino Acids on the Corrosion of Copper in Aerated Artificial Sea Water (공기가 포화된 인공해수에서 몇 가지 아미노산의 구리 부식 억제 효과)

  • Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.680-686
    • /
    • 2010
  • Inhibition effects of alanine(Ala), asparagine(Asn), aspartic acid(Asp), glutamine(Gln) and methionine(Met) on the corrosion of copper were investigated in aerated artificial sea water. Amino acid adsorption process in copper surface can be explained by Temkin logarithmic isotherm due to the interaction between the adsorbed molecules. The inhibition efficiency for the copper corrosion depended on the concentration of amino acids.

Fabrication of Copper Electrode Array and Test of Electrochemical Discharge Machining for Micro Machining of Glass (유리의 미세 가공을 위한 구리 전극군의 제작과 전기 화학 방전 가공 시험)

  • 정주명;심우영;정옥찬;양상식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.488-493
    • /
    • 2004
  • In this paper, we present the fabrication of copper electrode array and test of electrochemical discharge machining(ECDM) for glass machining. An array of 72 Cu electrodes is used to machine Borofloat33 glass. The height and diameter of a Cu electrode are 400 $\mu\textrm{m}$ and 100 $\mu\textrm{m}$ respectively. It is fabricated by ICP-RIE, Au-Au thermo-compression bonding, and copper electroplating. Borofloat33 glass is machined by the fabricated copper electrode array in 60 seconds at 55 V. The surface roughness of the machined glass is measured and the machined glass is anodically bonded with silicon.