• Title/Summary/Keyword: Coordinate Recognition

Search Result 171, Processing Time 0.023 seconds

Improvement of an Early Failure Rate By Using Neural Control Chart

  • Jang, K.Y.;Sung, C.J.;Lim, I.S.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Even though the impact of manufacturing quality to reliability is not considered much as well as that of design area, a major cause of an early failure of the product is known as manufacturing problem. This research applies two different types of neural network algorithms, the Back propagation (BP) algorithm and Learning Vector Quantization (LVQ) algorithm, to identify and classify the nonrandom variation pattern on the control chart based on knowledge-based diagnosis of dimensional variation. The performance and efficiency of both algorithms are evaluated to choose the better pattern recognition system for auto body assembly process. To analyze hundred percent of the data obtained by Optical Coordinate Measurement Machine (OCMM), this research considers an application in which individual observations rather than subsample means are used. A case study for analysis of OCMM data in underbody assembly process is presented to demonstrate the proposed knowledge-based pattern recognition system.

  • PDF

Implementation of an automatic face recognition system using the object centroid (무게중심을 이용한 자동얼굴인식 시스템의 구현)

  • 풍의섭;김병화;안현식;김도현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.114-123
    • /
    • 1996
  • In this paper, we propose an automatic recognition algorithm using the object centroid of a facial image. First, we separate the facial image from the background image using the chroma-key technique and we find the centroid of the separated facial image. Second, we search nose in the facial image based on knowledge of human faces and the coordinate of the object centroid and, we calculate 17 feature parameters automatically. Finally, we recognize the facial image by using feature parameters in the neural networks which are trained through error backpropagation algorithm. It is illustrated by experiments by experiments using the proposed recogniton system that facial images can be recognized in spite of the variation of the size and the position of images.

  • PDF

Human Action Recognition by Inference of Stochastic Regular Grammars (확률적 정규 문법 추론법에 의한 사람 몸동작 인식)

  • Cho, Kyung-Eun;Cho, Hyung-Je
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.248-259
    • /
    • 2001
  • This paper proposes a human action recognition scheme to recognize nonverbal human communications automatically. Based on the principle that a human body action can be defined as a combination of multiple articulation movements, we use the method of inferencing stochastic grammars to understand each human actions. We measure and quantize each human action in 3D world-coordinate, and make two sets of 4-chain-code for xy and zy projection plane. Based on the fact that the neighboring information among articulations is an essential element to distinguish actions, we designed a new stochastic inference procedure to apply the neighboring information of hands. Our proposed scheme shows better recognition rate than that of other general stochastic inference procedures. ures.

  • PDF

The Transition Invariant Feature Extraction of the Character using the Spherical Coordinate System (구 좌표계를 이용한 위치 불변 문자 특징 추출)

  • Seo, Choon-Weon
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.19-25
    • /
    • 2009
  • In this paper, I suggested the character recognition methods which are used the centroid method and included the spherical transform from the rectangle coordination for the character recognition system and obtained the results of the above 78.14% average differential ratio for the character features. The character feature extraction system using the spherical transform method is suggested in this paper, and the possibilities of the method which is get the invariant feature for the character transition using the centroid are suggested through the differential ratio results.

Development of Color Recognition Algorithm for Traffic Lights using Deep Learning Data (딥러닝 데이터 활용한 신호등 색 인식 알고리즘 개발)

  • Baek, Seoha;Kim, Jongho;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.45-50
    • /
    • 2022
  • The vehicle motion in urban environment is determined by surrounding traffic flow, which cause understanding the flow to be a factor that dominantly affects the motion planning of the vehicle. The traffic flow in this urban environment is accessed using various urban infrastructure information. This paper represents a color recognition algorithm for traffic lights to perceive traffic condition which is a main information among various urban infrastructure information. Deep learning based vision open source realizes positions of traffic lights around the host vehicle. The data are processed to input data based on whether it exists on the route of ego vehicle. The colors of traffic lights are estimated through pixel values from the camera image. The proposed algorithm is validated in intersection situations with traffic lights on the test track. The results show that the proposed algorithm guarantees precise recognition on traffic lights associated with the ego vehicle path in urban intersection scenarios.

Design of AI-Based VTS Radar Image for Object Detection-Recognition-Tracking Algorithm (인공지능 기반 VTS 레이더 이미지 객체 탐지-인식-추적 알고리즘 설계)

  • Yu-kyung Lee;Young Jun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.40-41
    • /
    • 2023
  • This paper introduces the design of detection, recognition, and tracking algorithms for VTS radar image-based objects. The detection of objects in radar images utilizes artificial intelligence technology to determine the presence or absence of objects, and can classify the type of object using AI technology. Tracking involves the continuous tracking of detected objects over time, including technology to prevent confusion in the movement path. In particular, for land-based radar, there are unnecessary areas for detection depending on the terrain, so the function of detecting and recognizing vessels within the region of interest (ROI) set in the radar image is included. In addition, the extracted coordinate information is designed to enable various applications and interpretations by calculating speed, direction, etc.

  • PDF

Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models (시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식)

  • Kim, Hyesuk;Kim, Incheol
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.927-934
    • /
    • 2014
  • In this paper, we propose an effective method for recognizing daily human activities from a stream of three dimensional body poses, which can be obtained by using Kinect-like RGB-D sensors. The body pose data provided by Kinect SDK or OpenNI may suffer from both the view variance problem and the scale variance problem, since they are represented in the 3D Cartesian coordinate system, the origin of which is located on the center of Kinect. In order to resolve the problem and get the view-invariant and scale-invariant features, we transform the pose data into the spherical coordinate system of which the origin is placed on the center of the subject's hip, and then perform on them the scale normalization using the length of the subject's arm. In order to represent effectively complex internal structures of high-level daily activities, we utilize Hidden state Conditional Random Field (HCRF), which is one of probabilistic graphical models. Through various experiments using two different datasets, KAD-70 and CAD-60, we showed the high performance of our method and the implementation system.

Conversion Method of 3D Point Cloud to Depth Image and Its Hardware Implementation (3차원 점군데이터의 깊이 영상 변환 방법 및 하드웨어 구현)

  • Jang, Kyounghoon;Jo, Gippeum;Kim, Geun-Jun;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2443-2450
    • /
    • 2014
  • In the motion recognition system using depth image, the depth image is converted to the real world formed 3D point cloud data for efficient algorithm apply. And then, output depth image is converted by the projective world after algorithm apply. However, when coordinate conversion, rounding error and data loss by applied algorithm are occurred. In this paper, when convert 3D point cloud data to depth image, we proposed efficient conversion method and its hardware implementation without rounding error and data loss according image size change. The proposed system make progress using the OpenCV and the window program, and we test a system using the Kinect in real time. In addition, designed using Verilog-HDL and verified through the Zynq-7000 FPGA Board of Xilinx.

Development of a real-time crop recognition system using a stereo camera

  • Baek, Seung-Min;Kim, Wan-Soo;Kim, Yong-Joo;Chung, Sun-Ok;Nam, Kyu-Chul;Lee, Dae Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.315-326
    • /
    • 2020
  • In this study, a real-time crop recognition system was developed for an unmanned farm machine for upland farming. The crop recognition system was developed based on a stereo camera, and an image processing framework was proposed that consists of disparity matching, localization of crop area, and estimation of crop height with coordinate transformations. The performance was evaluated by attaching the crop recognition system to a tractor for five representative crops (cabbage, potato, sesame, radish, and soybean). The test condition was set at 3 levels of distances to the crop (100, 150, and 200 cm) and 5 levels of camera height (42, 44, 46, 48, and 50 cm). The mean relative error (MRE) was used to compare the height between the measured and estimated results. As a result, the MRE of Chinese cabbage was the lowest at 1.70%, and the MRE of soybean was the highest at 4.97%. It is considered that the MRE of the crop which has more similar distribution lower. the results showed that all crop height was estimated with less than 5% MRE. The developed crop recognition system can be applied to various agricultural machinery which enhances the accuracy of crop detection and its performance in various illumination conditions.

An Efficient Face Recognition by Using Centroid Shift and Mutual Information Estimation (중심이동과 상호정보 추정에 의한 효과적인 얼굴인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.511-518
    • /
    • 2007
  • This paper presents an efficient face recognition method by using both centroid shift and mutual information estimation of images. The centroid shift is to move an image to center coordinate calculated by first moment, which is applied to improve the recognition performance by excluding the needless backgrounds in face image. The mutual information which is a measurements of correlations, is applied to efficiently measure the similarity between images. Adaptive partition mutual information(AP-MI) estimation is especially applied to find an accurate dependence information by equally partitioning the samples of input image for calculating the probability density function(PDF). The proposed method has been applied to the problem for recognizing the 48 face images(12 persons * 4 scenes) of 64*64 pixels. The experimental results show that the proposed method has a superior recognition performances(speed, rate) than a conventional method without centroid shift. The proposed method has also robust performance to changes of facial expression, position, and angle, etc. respectively.