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  Abstract: Even though the impact of manufacturing quality to reliability is not 
considered much as well as that of design area, a major cause of an early failure of 
the product is known as manufacturing problem. This research applies two different 
types of neural network algorithms, the Back propagation (BP) algorithm and 
Learning Vector Quantization (LVQ) algorithm, to identify and classify the 
nonrandom variation pattern on the control chart based on knowledge-based 
diagnosis of dimensional variation. The performance and efficiency of both 
algorithms are evaluated to choose the better pattern recognition system for auto 
body assembly process. To analyze hundred percent of the data obtained by Optical 
Coordinate Measurement Machine (OCMM), this research considers an application 
in which individual observations rather than subsample means are used. A case study 
for analysis of OCMM data in underbody assembly process is presented to 
demonstrate the proposed knowledge-based pattern recognition system. 
 
Keywords: Back propagation, Learning vector quantization, Knowledge-based 
 
 

1. INTRODUCTION 
 

Artificial neural network is a computational structure inspired by the study of 
biological neural processing. Artificial neural network models had been rapidly developed 
in the area of speech and image recognition. Several algorithms are applied as a new data 
analysis tool due to those adaptive nature and fast computational capability. Unlike 
statistical approach, neural network methods are non-parametric in the sense that 
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functional form need not be specified a priori. Rather than relying on a pre-specified 
functional form, neural networks build their own model by learning, testing and modifying. 

Artificial neural networks are computing system coordinating a number of 
interconnected processing elements called neurons. Initially, arbitrary values can be 
assigned to the weights of the network. Each case from a sample can be loaded on to the 
input layer of the network and the input nodes simply send these values to output nodes. 
Each output node calculates the weighted sum of the inputs using the weighted assigned to 
the connections. The output or activation value of a neuron is determined by transfer 
function and the weight values are adjusted by a specified learning rule. The system is 
inherently parallel in the sense that many units can carry out their computations at the 
same time. 

As shown Figure 1.1, artificial neural networks are computing systems containing a 
number of interconnected processing elements called neurons. Initially, arbitrary values 
can be assigned to the weights of the network. Each case from a sample can be loaded on 
to the input layer of the network and the input nodes simply send these values to output 
nodes. Each output node calculates the weighted sum of the inputs using the weights 
assigned to the connections. The output or activation value of a neuron is determined by 
transfer function and the weight values are adjusted by a specified learning rule. The 
system is inherently parallel in the sense that many units can carry out their computations 
at the same time. 

One of the most significant attributes of a neural network is its ability to learn by 
interacting with its environment or with an information source. Learning in a neural 
network is normally performed through an adaptive procedure, namely learning rule or 
algorithm. The purpose of the learning rule is to train the network to perform some tasks.  

 
Figure 1.1. Four basic components of artificial neurons 
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In supervised learning, each input pattern/signal received from the environment 
associated with a specific desired target pattern. Usually, the weights are synthesized 
gradually, and at each step of the learning process they are updated so that the error 
between the network's output and a corresponding desired target is reduced. Back 
propagation (BP) algorithm will be introduced and applied as a supervised learning in this 
thesis. 

On the other hand, unsupervised learning involves the clustering of, or the detection 
of similarities among, unlabeled patterns of a given training set. The idea here is to 
optimize (maximize or minimize) some criterion or performance function defined in terms 
of the output activity of the units in the network. Here, the weights and the outputs of the 
network are usually expected to converge to representations that capture the statistical 
regularities of the input data. Modified Hebbian algorithm will be introduced and applied 
as an unsupervised learning in this research. 

Competitive learning can be categorized as a one of the unsupervised learning rule. 
However, the competitive learning rule can be used to train the weights in a competitive 
network, without knowing the prototype vectors. These categories are be discovered by 
the network on the basis of correlations in the input data. Thus, the network would classify 
each cluster of "similar" input data as a single output class. Learning Vector Quantization 
(LVQ) algorithm will be introduced and applied as a competitive learning in this research. 

 
 

2.  NETWORK STRUCTURE 
 

2.1. Basic Assumptions 
The major reason for applying neural network algorithm to statistical process control 

(SPC) in this research is to automate SPC chart interpretation and to develop knowledge 
based diagnosis for automotive body assembly. There are several basic assumptions to 
build effective pattern recognition system. They are as follows: 

1) A network will be trained by only one pattern during a period time. It means that a 
trained network will only be able to identify a data set as being in one of defined 
nonrandom patterns. 

2) To avoid ambiguity between patterns which can result poor convergence of the 
network, each nonrandom pattern must be generated as clearly as possible. For example, a 
small random noise-contaminated cyclic or systematic pattern can be classified as a 
natural pattern. 

3) Since the main goal of this research is to improve type II error (or conclude the 
process is in control but actually is not) on a control chart, the most of training and testing 
data set will be generated within the control limit. 

4) Knowledge and previous information about the manufacturing process, herein 
automotive body assembly process, to which this automatic pattern recognition system are 
already known to build an effective recognition system. For instance, it is impossible to 
construct effective pattern recognition system for identifying all sorts of cycle periods and 
amplitudes. 

 
 2.2. Training and Testing Dataset 
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 Selection of the training data set is a key issue to the training of a neural network 
because it will strongly affect the performance of the networks. However, it is not easy to 
get such a training dataset, such as trend, cycle, mixture, and so on, from the process in 
practice. Thus, the pattern recognition algorithm proposed in this research is based on the 
assumption that the user has a set of patterns which is interested in detecting. The pattern 
generator designed to make a specified pattern has been described in Hwang and Hubele 
(1993). That pattern generator will be used to create both training and testing data sets in 
this research. 

 
2.2.1. Natural/Random Pattern 
First of all, natural pattern will be generated by general form which includes the 

process mean and random variations as follows. 
 

                                          y(t) = μ +x(t)                                                               (2.1) 
 

Where y(t) is measurement at time t and μ will be process mean when the process is 
in-control. The random noise, x(t), will be expressed by random normal variate at time t, 
where x(t) is N(0, pσx) and σx represents process standard deviation when the process in-
control. p will be the magnitude of random noise in terms of σx. The value of the p will 
vary between 0 and 1.  

 
2.2.2. Upward/Downward Trends 
 The training and testing dataset for trends will be generated by following equation. 
 

y(t) = μ +x(t) + (t-t｡)mσx                                                    (2.2) 
  
Where m represents the slop of the trend in terms of σx. The value of the m will be 

positive for upward trends and negative for downward trends. The m between 0.2 and 0.4 
by increasing 0.1 will be generated and trained the network for upward trends. Similarly, 
the m between -0.4 and -0.2 by increasing 0.1 will be generated the network for downward 
trends. If the slope m is more than 0.4 or less than -0.4, the dataset will be out of control 
limit. Thus, those cases are not considered in this research.  The t｡is a time reference point 
which indicates the starting point of this pattern. 

 
2.2.3. Cycle 
 An equation for cyclic patterns with a disturbance component may be described as 

below. 
 

y(t) = μ +x(t) + sin[2π(t-t｡)/T]kσ                                            (2.3) 
 
Where k is the amplitude of the cycle in terms of σx, and k > 1. T is the period of the 

cycle. The selection of training and testing and testing patterns for cycle can be very 
complicated because it involves many parameters. To avoid ambiguity between patterns 
and unnecessary weight changes which can result in poor convergence, the period of cycle 
will be limited from 14 to 18 based on the process knowledge and past experiences. In this 



K.Y. Jang, C. J. Sung, I. S. Lim                                                                                                                       5 

study, the period of 16 was selected to generate training and testing dataset. 
 
2.2.4. Systematic Pattern 
 The systematic patterns will be generated by following equations. 
 

y(t) = μ +x(t) +(-1)tQσx                                             (2.4) 
 
Where Q is the magnitude of the systematic pattern in terms of σx. The parameter 

values of Q must be less than 3.0, otherwise the most of data will be fallen out of control 
limit. 

 The equations from (2.2) to (2.4) in the pattern generator will generate several 
dataset by using several parameters that determine the specific shape of the pattern of 
interest. Each pattern defined as above must be generated as clearly as possible so that the 
pattern classes can be distinguishable as much as possible. 

For example, an upward trend patterns with small slopes which are less than 0.1 may 
be classified as a natural pattern. The parameters for each pattern class should cover whole 
range of the defined domain as long as all points are within control limit. A subset of all 
possible values for these parameters will be investigated in this research. Details about 
training set are listed in Table 2.1. 

 At least 15 training dataset per each combination of parameters for unnatural pattern 
will be generated to train networks. Also, 100 dataset per each variation pattern may be 
randomly generated for testing the performance of the network. 

 
2.3. Input and Output Layers 
The input of network will be any specific value of the deviation from nominal 

position on each measurement point. Therefore, the number of input neuron must be equal 
to the number of observations a given time period in automotive assembly process. For 
both BP and LVQ algorithms, the input data will be same value as the deviation value. 
The general rule in ANN is that the input size should be as small as possible for efficient 
computation because the size of input usually determines the size and structure of the 
network. It is found that more than 16 input node does not improve significantly the 
performance of the network. Thus, 16 input nodes are selected in the first layer in the 
network. 

 
Table 2.1. Parameter Values Used in the Training Set 

Pattern Parameter Comment 
Upward Trend (0.1 : 0.05 : 0.4) Slope 
Downward Trend (-0.4 : 0.05 : -0.1) Slope 
Cycle (1.0 : 0.25 : 3.0) Amplitude 
Systematic (1.0 : 0.25 : 3.0) Amplitude 

Note: (Initial value: Increment: Final value) 
 
 

Table 2.2. Representation of the Output Categories 
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Pattern Desired outputs 
1 2 3 4 5 

Natural 1 0 0 0 0 
Upward Trend 0 1 0 0 0 
Downward Trend 0 0 1 0 0 
Cycle 0 0 0 1 0 
Systematic 0 0 0 0 1 

 
There are five output nodes corresponding to four unnatural patterns and a natural 

pattern of interest. The desired outputs will be used for both back propagation and LVQ 
algorithm. 
 

2.4 Hidden layer and Transfer Function 
There are no general rules to decide the number of hidden layers and the number of 

nodes in the hidden layer. In all cases found during this literature review, the number of 
hidden layers had been decided through trial and error. Guo and Dooley (1992) 
highlighted that fact there was no standard way of deciding the number of hidden layer 
and stated that as a rule of thumb either one or two hidden layers should be sufficient for 
almost any classification problem. To decide the number of nodes if the hidden layer, we 
can apply Kolmogorov's theorem that the maximum number of nodes in a hidden layer 
should be restricted to 2n+1, where n is the number of input nodes. In this algorithm, the 
number of node will be less than 33(=2*16+1). Since too many nodes of hidden layer 
merely creates more chances for problems arising from local minimum, several cases of 
hidden layer will be performed and compared those performance to decide best fitted 
model in this research. Results showed the evolution of the network with different 
numbers of hidden nodes and 8 nodes in the hidden layer are appropriate in the network. 
Thus, 16-8-5 network gives best fitted model for nonrandom pattern recognition system in 
this research. 

 The back propagation algorithm works with any differentiable transfer function. The 
most widely used is the sigmoid (it is also called logistic sigmoid) function with output 
values ranging from 0 to 1. However, Guo and Dooley (1992), Hwarng and Huble (1993), 
Chang and Aw (1996) have encountered difficulty to detect directional invariance 
property using sigmoid function. Furthermore, since the output of the transfer function is 
used as a multiplier in the weight update equation, a range of output will be smaller when 
the summation is small and larger when summation is large [Cheng, 1997]. Another 
feasible transfer function is the hyperbolic tangent, with output values in the range from -1 
to 1. The hyperbolic tangent function will provide equal weight to low and high end 
values. Thus, the hyperbolic tangent function will be used as a transfer function in this 
research. The LVQ algorithm will use the hyperbolic tangent function for hidden layer but 
simple binary transfer function will be used for output layer.  

 
2.5 Train Network 
During the training procedures, a learmines coefficient of 0.01 was used. The 

magnitude of this coefficient determines the pace of weight adaptation. Usually, a too 
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large coefficient causes the convergence behavior to be oscillating and possibly never 
converge. On the other hand, a too small coefficient causes the learning process to 
progress slowly but has better chances to avoid local minimum. After several simulations 
of this network, the learning coefficient with a value 0.01 was the appropriate in this 
application. 

 The each pattern will be randomly and independently generated in the training set. 
Also, all patterns are equally represented in the training dataset to make performance 
comparisons among the pattern class. The weights for both BP and LVQ will be adjusted 
until the network converges to a pre-specified condition. The following steps are 
performed to train the network. 

 
Step 1: Initializing Weight Vectors 
At the beginning of training, the initial weights for both hidden layer and output layer 

are set randomly between -0.1 and +0.1. 
 
Step 2: Presenting Input Vectors with Desired Vectors 
Each input vector with the associated desired vector must be randomly selected and 

put in the network. 
 
Step 3: Updating Weights 
Modify weight matrixes by using Equation for BP algorithm and also modify weight 

matrixes for LVQ algorithm. 
 
Step 4: Stopping Criterion 
Repeat Step2-Step3 until all patterns are correctly classified or the required value of 

SSE has been reached for BP algorithm and the required iteration has been completed for 
LVQ algorithm. 

 
2.6 Performance Evaluation 
The performance evaluation was conducted to validate the usefulness of the proposed 

algorithms. Various combinations of parameters were used to test the classification ability 
of the network. Each testing data consists of 16 observations. To determine the on/off 
(1/0) state of the output node, any maximum value in the output vector set to 1 and other 
values set to 0. For example, if a real output vector is [0.32, 0.01, -0.43, 0.03, 0.97]T, the 
classified output will be [0, 0, 0, 0, 1]T which indicates the systematic pattern. The 
performance of the Back propagation (BP) and Learning vector Quantization (LVQ) for 
each nonrandom pattern with various parameters is summarized from Table 2.3 to Table 
2.10. 

The performances on upward and downward trends for BP and LVQ are shown in the 
Table 2.3 to Table 2.6. As can be seen, both BP and LVQ algorithms have more than 98% 
accuracy to detect right classes. However, the performance rates with small random noise 
(e.g. = 0.1) are relatively lower than others. 

The performance on cycles clearly depends on the amplitude of the cycle and the 
associated random noise. The results are summarized in Table 2.9 and Table 2.10. The 
performance to detect cyclic pattern is poor when the amplitude of the cycle and the 
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associated random noise are relatively small. For instance, the accuracy of BP algorithm is 
61% and 77% for cycles with (amplitude, random noise) = (1.5, 0.1) and (1.5, 0.2), 
respectively. On the other hand, the accuracy rate of LVQ algorithm for cycle is not too 
much sensitive to compare with BP algorithm as long the magnitude of cycle is large 
enough. This is obvious because a smaller random noise-contaminated cycle will be more 
likely natural pattern. 

As can be seen in Table 2.9 and Table 2.10, some of systematic pattern with a small 
random noise can be classified as a natural pattern. Other cases, the performance of 
systematic pattern for LVQ algorithm is quiet consistent with various parameters. 
Whereas, the performance of systematic pattern for BP algorithm highly depends on the 
magnitude of random noise. Similar to cyclic pattern, it can be concluded that a smaller 
random noise-contaminated systematic pattern can be classified by a natural pattern. 

From the overall results of performance evaluations, it can be concluded that LVQ 
algorithm has better capability for classifying nonrandom patterns than BP algorithm. At 
each learning iteration, the LVQ network is only told whether its input is correct or not 
and the neuron which wins the competition by being closest to the input vector is activated 

 
Table 2.3. Performance Measurement of BP for upward Trends with Various Pattern 

Parameters 
S : Slope  Upward Downward   

SD : Random Noise Natural Trend Trend Cycle Systematic 
S=0.4  SD=0.1  (100)  100    
S=0.4  SD=0.2  (100)  100    
S=0.4  SD=0.3  (100)  100    
S=0.3  SD=0.1  (100) 1 99    
S=0.3  SD=0.2  (100)  100    
S=0.3  SD=0.3  (100)  100    
S=0.2  SD=0.1  (100) 7 93    
S=0.2  SD=0.2  (100) 2 98    
S=0.2  SD=0.3  (100) 1 99    

 
Table 2.4. Performance Measurement of LVQ for upward Trends with Various Pattern 

Parameters 
S : Slope  Upward Downward   

SD : Random Noise Natural Trend Trend Cycle Systematic 
S=0.4  SD=0.1  (100)  100    
S=0.4  SD=0.2  (100)  100    
S=0.4  SD=0.3  (100)  100    
S=0.3  SD=0.1  (100)  100    
S=0.3  SD=0.2  (100)  100    
S=0.3  SD=0.3  (100)  100    
S=0.2  SD=0.1  (100) 2 98    
S=0.2  SD=0.2  (100)  100    
S=0.2  SD=0.3  (100)  100    
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Table 2.5. Performance Measurement of BP for Downward Trends with Various Pattern 

Parameters 
S : Slope  Upward Downward   

SD : Random Noise Natural Trend Trend Cycle Systematic 
S=0.4  SD=0.1  (100)   100   
S=0.4  SD=0.2  (100)   100   
S=0.4  SD=0.3  (100)   100   
S=0.3  SD=0.1  (100) 2  97 1  
S=0.3  SD=0.2  (100) 1  99   
S=0.3  SD=0.3  (100)   100   
S=0.2  SD=0.1  (100) 9  89 2  
S=0.2  SD=0.2  (100) 6  94   
S=0.2  SD=0.3  (100)   100   

 
 

Table 2.6. Performance Measurement of LVQ for Downward Trends with Various Pattern  
Parameters 

S : Slope  Upward Downward   
SD : Random Noise Natural Trend Trend Cycle Systematic 

S=0.4  SD=0.1  (100)   100   
S=0.4  SD=0.2  (100)   100   
S=0.4  SD=0.3  (100)   100   
S=0.3  SD=0.1  (100) 1  99   
S=0.3  SD=0.2  (100)   100   
S=0.3  SD=0.3  (100)   100   
S=0.2  SD=0.1  (100) 8  92   
S=0.2  SD=0.2  (100)   100   
S=0.2  SD=0.3  (100)   100   

 
 

Table 2.7. Performance Measurement of BP for Cyclic Pattern with Various Pattern 
Parameters 

A : Magnitude  Upward Downward   
SD : Random Noise Natural Trend Trend Cycle Systematic 

A=1.5  SD=0.1  (100) 39   61  
A=1.5  SD=0.2  (100) 23   77  
A=1.5  SD=0.3  (100) 8   92  
A=2.0  SD=0.1  (100) 6   94  
A=2.0  SD=0.2  (100) 1   99  
A=2.0  SD=0.3  (100)    100  
A=2.5  SD=0.1  (100) 2   98  
A=2.5  SD=0.2  (100)    100  
A=2.5  SD=0.3  (100)    100  

Table 2.8. Performance Measurement of LVQ for Cyclic Pattern with Various Pattern 
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Parameters 
A : Magnitude  Upward Downward   

SD : Random Noise Natural Trend Trend Cycle Systematic 
A=1.5  SD=0.1  (100) 22   78  
A=1.5  SD=0.2  (100) 2   98  
A=1.5  SD=0.3  (100)    100  
A=2.0  SD=0.1  (100) 1   99  
A=2.0  SD=0.2  (100)    100  
A=2.0  SD=0.3  (100)    100  
A=2.5  SD=0.1  (100)    100  
A=2.5  SD=0.2  (100)    100  
A=2.5  SD=0.3  (100)    100  

 
 

Table 2.9. Performance Measurement of BP for Systematic Pattern with Various Pattern 
Parameters 

A : Magnitude  Upward Downward   
SD : Random Noise Natural Trend Trend Cycle Systematic 

A=1.5  SD=0.1  (100) 23 12   65 
A=1.5  SD=0.2  (100)  4   96 
A=1.5  SD=0.3  (100)     100 
A=2.0  SD=0.1  (100) 11 5   84 
A=2.0  SD=0.2  (100)     100 
A=2.0  SD=0.3  (100)     100 
A=2.5  SD=0.1  (100) 1 1   98 
A=2.5  SD=0.2  (100)     100 
A=2.5  SD=0.3  (100)     100 

 
 

Table 2.10. Performance Measurement of LVQ for Systematic Pattern with Various 
Pattern Parameters 

A : Magnitude  Upward Downward   
SD : Random Noise Natural Trend Trend Cycle Systematic 

A=1.5  SD=0.1  (100) 19    81 
A=1.5  SD=0.2  (100)     100 
A=1.5  SD=0.3  (100)     100 
A=2.0  SD=0.1  (100) 3    96 
A=2.0  SD=0.2  (100)     100 
A=2.0  SD=0.3  (100)     100 
A=2.5  SD=0.1  (100)     100 
A=2.5  SD=0.2  (100)     100 
A=2.5  SD=0.3  (100)     100 

 
 
and allowed to modify its connection weight. This means that the LVQ algorithm is 
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appropriate pattern recognizer when various parameters are involved in the system. 
 

 
3. DIAGNOSIS OF THE NONRANDOM PATTERNS 

 
 After any nonrandom variations are detected or sustained on the automotive body, 

corrective action will be required in order to improve the dimensional quality. Roan 
(1993) and Ceglarek (1994) developed several case studies and strategies to locate the root 
causes for diagnosis of the process fault using knowledge of assembly process.  However, 
they focused only on the sudden process change and large variations. Unfortunately, there 
are no any attempts to identify and diagnose regarding to nonrandom variation patterns in 
the assembly process. Based on their approach, diagnosis for nonrandom variation pattern 
defined if this research can be categorized by using manufacturing experiences, existing 
case studies and the knowledge of the assembly process. They are as follows: 

 
1) Upward/downward Trends 
  - Not enough spot welding 
  - Tooling problems (clamp, welding) 
  - Inconsistent dimensional quality of stamping process 
2) Cyclic Pattern 
  - Difference between measuring machine 
  - Rotation of fixtures or gages 
  - Regular movements of measurement sensing devices 
  - Incorrect positioning for measuring machine station 
 
3) Systematic Pattern 
  - Difference in spread between different conveyors or shifts 
  - Assembly fixtures 
  - Locating holes 
  - Worn positions or treads on locking devices 
  - Loose holding arms 
 
 There are tremendous factors which can affect to dimensional quality. This means 

there are many possible root causes from any assembly stations, tools, fixture and etc. 
Above categorized root causes might be not enough to cover whole assembly process to 
help rapid corrective actions. However, it is a time-tolerated issue to build more detailed 
knowledge base for all possible causes of the dimensional variations. This issue will be 
left for the future working of this research. If any same variation patterns occur as does the 
old solved one, the root cause of the new case might be the same as that of the solved one. 
It will greatly narrow down to find possible causes and make it possible to rapid corrective 
reactions to improve dimensional quality. The following case study will demonstrate how 
the proposed network works for real data in automotive body assembly process in detail. 

 
 

4. CASE STUDY 
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4.1 Data Collection 
 As a case study for neural control chart, the underbody assembly is presented. During 

body assembly operations, there are about 82 pallets which carry the auto bodies from 
station to station in the assembly line. Usually, there are 3 pin holes which support to 
position the underbody on the pallet. After underbody is loaded onto a pallet, the clamps 
of the pallet are closed to fix the position of the underbody on the pallet. Then, the 
underbody moves into each assembly station to weld subassemblies together. Clearly, 
underbody assembly process is very important because even small variations on the 
underbody will greatly affect to final BIW assembly. This section presents a case study 
frequently encountered in underbody assembly process. From the body shop assembly line, 
data was collected, n=419 per each measurement (total of 72 measurements) by the 
OCMM from the underbody assembly process. 

 
4.2 Nonrandom Pattern Detection  
 To apply proposed algorithm, moving windows of data are presented to the network. 

The trained networks (BP and LVQ) tried to identify a nonrandom pattern based on the 
most recent 16 observations because, from the process control of view, the most recent 
data have important information for process control. If any nonrandom patterns are not 
detected, the network will try to identify a nonrandom pattern based on the second most 
recent 16 observations. For example, the first classification attempt is applied to 
observations, {x405, x406, x407, …, x418} and …… {xt-15, xt-14, xt-13, …, xt}. Figure 1.1 shows 
the methodology of moving windows pictorially. As soon as data is preprocessed, each 
window of data is filtered through the trained network and determined one of predefined 
pattern classes (natural, upward trend, downward trend, cycle, or systematic). 

 All measured points were investigated by proposed network whether any nonrandom 
variation patterns occurred of not. As can be seen in Figure 4.1, systematic patterns were 
found on three points (UR2, UK1, UK2) around left rocker of the underbody. Specifically, 
systematic patterns were detected on the UK2 from x150, to x419, and other are classified as 
natural. Similarly, UK1 has systematic pattern during {x80, x81, …, x226} and {x272, x273, …, 
x419 }. Also, systematic patterns were found on UK2 during {x143, x144, …, x216} and {x258, 
x259, …, x419}. 

 From knowledge base for nonrandom variation pattern, systematic variation pattern 
can be from assembly fixtures or locating holes in the assembly process. Thus, this pattern 
suggested that the possibility of variation came from in part positioning. After 
investigation of the pallets, it was found that the three pin holes on the pallet had been 
worn out. The pin holes were replaced as a corrective action. After corrective action, new 
216 samples were collected at the same measurement points and checked by the proposed 
network. The network classified the variation pattern for all three points are natural. 
Figure 4.1 shows run charts for same measurement points after corrective action. 
Therefore, we conclude that all measured points are in control. 

The case study shows clearly how proposed neural network can detect and identify the 
predefined nonrandom variation pattern. Once these nonrandom patterns occur again on 
the run chart, the root causes of dimensional variations can be located systematically by 
investigating each possible cause based on the knowledge of the assembly process. 
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Therefore, it can be expected that the run chart with the proposed pattern recognition 
algorithm will play a more important role as a systematic diagnosis tool rather than only 
as a statistical monitoring tool.  

 
 

 
Figure 4.1. The concept of moving windows  
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Figure 4.2. Run charts for three measurement points on the underbody 

 
 

5. CONCLUSION 
 
 In this research, a control chart pattern recognition methodologies based on the Back 

propagation (BP) and Learning Vector Quantization (LVQ) algorithms were presented 
Four nonrandom variations, which were upward trends, downward trends, cyclic pattern, 

and systematic pattern, were predefined to network. To train the networks, both BP and 
LVQ networks used the dataset generated by pattern generator with various combination 
of shape parameters and their performances were evaluated in terms of classification test. 
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An extensive evaluation indicated that LVQ performed better than BP. The proposed 
pattern recognition algorithm integrated with the process knowledge basis are designed 
not only to detect variation patterns, but also to address the identification of unacceptable 
variation manifested by nonrandom, or unnatural, patterns on the control chart. With this 
approach, the process can be monitored by a computer based pattern recognition algorithm 
without the need of human intervention. Accordingly, it contributes the reduction of an 
early failure rate of the item in the field. 
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