• Title/Summary/Keyword: Cooperative Spectrum sensing

Search Result 136, Processing Time 0.028 seconds

Cooperative Spectrum Sensing Via Sequential Detection: A Method to Reduce the Sensing Time

  • Thanh, Truc Tran;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.196-202
    • /
    • 2012
  • Spectrum sensing is one of the most important functions in cognitive radio systems. In this paper, we focus on reducing the sensing time in a cooperative spectrum sensing paradigm. In the proposed scheme, a sequential detection technique is employed to provide a robust and quick detection system. Each of the secondary users measures the log-likelihood probability of the received signals and then sequentially reports to the base station. Here, the maximum ratio combining (MRC) technique is employed to reduce the average sample number (ASN) in order to reduce the sensing time. This proposed scheme is analyzed and simulated to illustrate the performance in comparison with the other given methods. Analysis and simulation are provided to validate the proposed method.

An Improved Combining of Hard Decisions for Cooperative Spectrum Sensing in Cognitive Radio Systems (무선인지 시스템에서 협력 스팩트럼 센싱 성능 향상을 위한 경판정 결합 기법)

  • Shin, Oh-Soon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.132-138
    • /
    • 2009
  • Cognitive radio is considered as a promising solution to scarce spectrum problem. The primary object of cognitive radio is to increase spectral efficiency, while causing limited interference to primary users who are using the spectrum. Hence, an essential part of cognitive radio systems is spectrum sensing which determines whether a particular spectrum is occupied or not by a primary user at a particular time. However, sensing decision of each individual secondary user alone may not be reliable enough due to shadowing and multipath fading of wireless channels. The so called hidden terminal problem makes the problem even worse, possibly yielding undesired interference to the primary users. Recently, cooperative spectrum sensing is emerging as a remedy to these problems of individual sensing. Cooperative sensing allows a group of secondary users to share local sensing information to extract a global decision with high fidelity. In this paper, we investigate a cooperative spectrum sensing algorithm based on hard decisions of local sensing outcomes. Specifically, we propose an effective scheme for combining local decisions by introducing weighting factors that reflect reliability of the corresponding secondary user. Through computer simulations, the performance of the proposed combining scheme is compared with that of the conventional scheme without weighting factors in various environments.

Two-Stage Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Networks

  • Satrio, Cahyo Tri;Jaeshin, Jang
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Spectrum sensing in cognitive radio networks allows secondary users to sense the unused spectrum without causing interference to primary users. Cognitive radio requires more accurate sensing results from unused portions of the spectrum. Accurate spectrum sensing techniques can reduce the probability of false alarms and misdetection. In this paper, a two-stage spectrum sensing scheme is proposed for cooperative spectrum sensing in cognitive radio networks. In the first stage, spectrum sensing is executed for each secondary user using energy detection based on double adaptive thresholds to determine the spectrum condition. If the energy value lies between two thresholds, a fuzzy logic scheme is applied to determine the channel conditions more accurately. In the second stage, a fusion center combines the results of each secondary user and uses a fuzzy logic scheme for combining all decisions. The simulation results show that the proposed scheme provides increased sensing accuracy by about 20% in some cases.

Selection Based Cooperative Spectrum Sensing in Cognitive Radio (무선인지시스템을 위한 선택적 협력 스펙트럼 검출 기법)

  • Nhan, Nguyen Thanh;Kong, Hyung-Yun;Koo, In-Soo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, we propose an effective method for cooperative spectrum sensing in cognitive radios where cognitive user(CR) with the highest reliability sensing data is only selected and allowed to report its local decision to FC as only decision making node. The proposed scheme enables CR users to implicitly compare their sensing data reliabilities based on their likelihood ratio, without any collaboration among cognitive radio users. Due to the mechanism, the proposed cooperative scheme can achieves a high spectrum sensing performance while only requiring extremely low cooperation resources such as signaling overhead and cooperative time in comparison with other existing methods such as maximum ratio combination (MRC) based, equal gain combination (EGC) based and conventional hard combination based cooperative sensing methods.

Or-Rule Based Cooperative Spectrum Sensing Scheme Considering Reporting Error in Cognitive Radio Networks (인지 무선 네트워크에서 보고 오류를 고려한 OR 규칙 기반의 협력 스펙트럼 센싱 기법)

  • Choe, Romi;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.19-27
    • /
    • 2014
  • As frequency resource has taken on greater importance, Cognitive Radio(CR) technology has been considered as the solution to improve spectrum utilization by allowing a secondary user to utilize a licensed band when the primary user is absent. So spectrum sensing is significant part of CR for high performance. Recently, cooperative spectrum sensing that secondary users share each sensing results is proposed to improve spectrum sensing accuracy. In this paper, OR rule based cooperative spectrum sensing scheme using reporting error probability which occurs in user to fusion center(FC) channel The simulation results show that proposed scheme mitigates false alarm probability limitation which appears in existing cooperative spectrum sensing scheme by restricting the number of cooperating users using reporting error probability.

Self-weighted Decentralized Cooperative Spectrum Sensing Based On Notification for Hidden Primary User Detection in SANET-CR Network

  • Huang, Yan;Hui, Bing;Su, Xin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2561-2576
    • /
    • 2013
  • The ship ad-hoc network (SANET) extends the coverage of the high data-rate terrestrial communications to the ships with the reduced cost in maritime communications. Cognitive radio (CR) has the ability of sensing the radio environment and dynamically reconfiguring the operating parameters, which can make SANET utilize the spectrum efficiently. However, due to the dynamic topology nature and no central entity for data fusion in SANET, the interference brought into the primary network caused by the hidden primary user requires to be carefully managed by a sort of decentralized cooperative spectrum sensing schemes. In this paper, we propose a self-weighted decentralized cooperative spectrum sensing (SWDCSS) scheme to solve such a problem. The analytical and simulation results show that the proposed SWDCSS scheme is reliable to detect the primary user in SANET. As a result, secondary network can efficiently utilize the spectrum band of primary network with little interference to primary network. Referring the complementary receiver operating characteristic (ROC) curves, we observe that with a given false alarm probability, our proposed algorithm reduces the missing probability by 27% than the traditional embedded spectrally agile radio protocol for evacuation (ESCAPE) algorithm in the best condition.

An Efficient Spectrum Sensing Technique for Wireless Energy Harvesting Systems (무선에너지하비스팅 시스템을 위한 효율적인 스펙트럼 센싱 기법)

  • Hwang, Yu Min;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • Spectrum sensing is a critical functionality of Cognitive Radio(CR) systems and the CR systems can be applied to RF energy harvesting systems to improve an energy harvesting rate. There are number of spectrum sensing techniques. One of techniques is energy detection. Energy detection is the simplest detection method and is the most commonly used. But, energy detection has a hidden terminal problem in real wireless communication, because of secondary user (SU) can be affected by frequency fading and shadowing. Cooperative spectrum sensing can solve this problem using spatial diversity of SUs. But it has a problem of increasing data by processing multiple secondary. So, we propose the system model using adaptive spectrum sensing algorithm and system model is simulated. This algorithm chooses sensing method between single energy sensing and cooperative energy according to the received signal's Signal to Noise Ratio (SNR) from Primary User (PU). The simulation result shows that adaptive spectrum sensing has an efficiency and improvement in CR systems.

Enhanced Robust Cooperative Spectrum Sensing in Cognitive Radio

  • Zhu, Feng;Seo, Seung-Woo
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.122-133
    • /
    • 2009
  • As wireless spectrum resources become more scarce while some portions of frequency bands suffer from low utilization, the design of cognitive radio (CR) has recently been urged, which allows opportunistic usage of licensed bands for secondary users without interference with primary users. Spectrum sensing is fundamental for a secondary user to find a specific available spectrum hole. Cooperative spectrum sensing is more accurate and more widely used since it obtains helpful reports from nodes in different locations. However, if some nodes are compromised and report false sensing data to the fusion center on purpose, the accuracy of decisions made by the fusion center can be heavily impaired. Weighted sequential probability ratio test (WSPRT), based on a credit evaluation system to restrict damage caused by malicious nodes, was proposed to address such a spectrum sensing data falsification (SSDF) attack at the price of introducing four times more sampling numbers. In this paper, we propose two new schemes, named enhanced weighted sequential probability ratio test (EWSPRT) and enhanced weighted sequential zero/one test (EWSZOT), which are robust against SSDF attack. By incorporating a new weight module and a new test module, both schemes have much less sampling numbers than WSPRT. Simulation results show that when holding comparable error rates, the numbers of EWSPRT and EWSZOT are 40% and 75% lower than WSPRT, respectively. We also provide theoretical analysis models to support the performance improvement estimates of the new schemes.

Advanced Sensing Techniques of Energy Detection in Cognitive Radios

  • Wang, Han-O;Noh, Go-San;Kim, Dong-Kyu;Kim, Sung-Tae;Hong, Dae-Sik
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.19-29
    • /
    • 2010
  • Recently, spectrum sensing has been intensively studied as a key technology in realizing the cognitive radio. There have been advances in the performance of spectrum sensing through both multi-antenna and cooperative sensing schemes. In this paper, the performances and complicated scenarios of the latest spectrum sensing schemes are analytically compared and arranged into a technical tree while considering practical concerns. This paper will give a macroscopic view of spectrum sensing and will also provide insight into future spectrum sensing works.

A Study on RFID Sensors Location Tracking Systems Using Cooperative Spectrum Sensing (협력 스펙트럼 센싱을 이용한 RFID 센서의 위치인식 시스템에 대한 연구)

  • Roh, Chang-Bae;Na, Won-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.839-844
    • /
    • 2011
  • Various technologies such as infrared light, ultrasonic waves, RFID, GPS, UWB, and signal indicators have been incorporated in the location tracking system. However, such pre-existing systems require location recognition in shadow areas. This study proposes a location tracking system that utilizes Cooperative Spectrum Sensing. Cooperative Spectrum Sensing is not only able to track the location and path of moving objects but also recognize when objects breakaway from the path set by sensors and guide them back. In addition, it has the advantage of being more efficient in terms of frequency usage. It is able to automatically fix power transmission and frequency modulation for transmission cognitive users to an optimum level within the range that does not cause interference for primary users.