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Cooperative Spectrum Sensing Via Sequential Detection: 

A Method to Reduce the Sensing Time
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Abstract 

Spectrum sensing is one of the most important functions in cognitive radio systems. In this paper, we focus on 
reducing the sensing time in a cooperative spectrum sensing paradigm. In the proposed scheme, a sequential detection 
technique is employed to provide a robust and quick detection system. Each of the secondary users measures the 
log-likelihood probability of the received signals and then sequentially reports to the base station. Here, the maximum 
ratio combining (MRC) technique is employed to reduce the average sample number (ASN) in order to reduce the 
sensing time. This proposed scheme is analyzed and simulated to illustrate the performance in comparison with the 
other given methods. Analysis and simulation are provided to validate the proposed method.
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Ⅰ. Introduction

Stimulated by the increase in wireless services, a 

great increase in radio spectrum demand has resulted in 

a scarcity of any new radio frequency band allocations. 

This has prompted the need for a secondary system that 

is able to coexist with the existing licensed spectrum.  

Fortunately, this idea is practical because the scarcity of 

radio spectra is actually related to ineffective utilization 

rather than an actual shortage. A survey of the fixed gr-

anted band ranging from 30 MHz to 3 GHz has suggest-

ed the presence of numerous white spaces that would al-

low a secondary system to operate [1]. The Federal Co-

mmunication Commission (FCC)’s interest in white spa-

ces in TV bands [2] has prompted the investigation and 

development of this secondary system. 

However, the secondary system must not harm the 

primary system transmission. The new system must also 

have low cost infrastructure installation and be compa- 

tible with the legacy primary system. From this aspect, 

cognitive radio technology (CR) is considered to be a 

competitive candidate when compared with approaches 

that use data base registry and beacon signaling [1]. At 

present, the IEEE 802.22 has developed a standard for 

the TV-band cognitive radio-based devices [3]. During 

this development, the problem of how to gain reliable 

detection in an environment of fading in the TV band 

has been the key challenge. Many spectrum sensing sche-

mes were investigated for IEEE 802.22 standard and 

these can be categorized into two classes: single sensing 

and cooperative sensing schemes. Among spectrum sen-

sing approaches, cooperative spectrum sensing is viewed 

as an effective method for overcoming the uncertainty 

of the noise channel. In this paper, we focus on how to 

improve the performance of a cooperative sensing me- 

thod using a quick and robust detection method: sequen-

tial detection.

Traditionally, a spectrum sensing method employs the 

Neyman-Pearson criterion within a fixed sensing time 

and a predefined threshold. Unlike this traditional ap-

proach, the method of so-called sequential detection, 

first proposed by Wald, has an unfixed sensing time [4]. 

Recent research related to this method can be found in 

[5]. In addition, other recent papers exploit the techni-

que to investigate spectrum sensing in cognitive radio 

networks, as shown in [6], [7]. In [6], Chaudhari et al. 

proposed a method that sequentially combines log-like-

lihood ratios tested from different cognitive radios, whe-

reas the authors in [7] applied the technique to cyclosta-

tionary detection. Recently, Qiyue Zou, et al. [8] em-
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ployed sequential detection to cope with the effects of 

noise uncertainty. All of these techniques provide ways 

to reduce the sensing time and the number of signal 

samples.

Relying on previous work, in this paper, we consider 

a model in which the base station (BS) uses the MRC 

technique to reduce the detection time during the se-

quential spectrum detection. Sequential detection is also 

investigated in the cooperative spectrum sensing scheme. 

This paper considers the optimization for selection of 

the optimal weights that give the minimum average sam-

ple number. The structure of the article is divided into 

5 parts: (Ⅰ) Introduction, (Ⅱ) System model, (Ⅲ) Ana-

lysis, (Ⅳ) Simulation, and (Ⅴ) Conclusion.

Ⅱ. System Model

Inheriting the previous framework in [8], in this pa-

per, we employ collaborative spectrum sensing via se-

quential detection. Fig. 1 illustrates the model. In this 

paradigm, the log-likelihood statistical test is measured 

by each CR and then reported to the base station (BS). 

The base station is responsible for sequentially cumulat-

ing this statistical test and making a decision whenever 

the stop condition is reached. We also employ the MRC 

technique to minimize the average sample number, in 

order to reduce the sensing time. In this paper, we as-

sume that the received signal collected by each CR has 

a Gaussian distribution. Two hypotheses, H0 and H1, are 

denoted as cases of absence and presence of the primary 

signal, respectively. The signal acquired by the m-th CR 

is given as follows 

0 0,

1 1,

H : [ ] [ ]

H : [ ] [ ],  1,2,

m m

m m

x n s n

x n s n n

=

= = ¼
 

H : [ ] [ ]

H : [ ] [ ],  1,2,

x n s n

x n s n n= = ¼

where 0, [ ]ms n is the n-th sample acquired by the m-th 

CR under H0 and 1, [ ]ms n is similarly for the respective 

signal under H1. The probability of each sample under 

each hypothesis is accordingly given as [ ]( )0,m mp x n  for 

the H0 and [ ]( )1,m mp x n for the H1. We also denote, by 

PF and PM, respectively, the false alarm and the miss 
detection of BS. 

We describe the algorithm termed Algorithm 1 to col-

lect the samples for global sensing. Within the model, 

each CR carries out its task by collecting and measuring 

the log-likelihood statistical test as given by:
 

[ ]
[ ]( )
[ ]( )

0,

1,

ln ,  
m m

m

m m

p x n
z n m M

p x n

æ ö
= £ç ÷

ç ÷
è ø  

ln ,  z n m M
æ ö

= £ç ÷
ç ÷
è ø

,
(1)

 

where M is the number of CRs required to cooperate. 

Fig. 1. System model.

 

 

The results are reported to the BS, where they are com-

bined in order to make the global detection, as follows:
 

[ ] [ ] [ ] [ ] [ ]1 1 2 2 ..T
M Mz n z n z n z n z nw w w w= = + + +% , (2)

 

where ω is denoted as the weight vector [ 1 2, ,..,w w w w=

]1 2, ,..,
T

Mw w w w and ω≥0, and z is denoted as the log-likelihood 

vector for the signal reported by each CR [ ] [ ]1 2, ,..,z n z n z n z né ù= ë û

[ ] [ ]1 2, ,..,
T

Mz n z n z n z né ùë û . In this model, we assume that the BS 

completely known regarding the distribution of mea-

surements. The BS implements the global sensing by 

carrying out the cumulative sum LLR, as given by:
 

( ) [ ]
1

n

k

LLR n z k
=

=å %
(3)

 

BS continues to accumulate the statistical test, sample 

by sample, when the cumulative sum is still in the range 

of B and A, ( )B LLR n A< < .Therefore, more sampl-  

es are acquired until it reaches either a condition of 

( )LLR n B£ or ( )LLR n A³ .

Algorithm 1

0: Base station set k = 0, LLR(0) = 0

1: repeat

2:    1k k= +

3:     the m-th radio carries out the sensing and measure 

the likelihood statistic ratio [ ]( ) [ ]( )( )0, 1,ln m m m mp x n p x n

4:    the base station collects the log-likelihood ratio 

and makes a weighted cumulative sum as given,

      ( ) ( )
[ ]( )

[ ]( )
0 ,

1 1,

1 ln
M

m m

m

m m m

p x n
LLR k LLR k

p x n
w

=

= - +
æ ö
ç ÷
è ø

å

5: until ( ( ) ( )      LLR k B or LLR k A£ ³ )

6: when ( )   LLR k B£ , H0 is declared. Otherwise if

( )   LLR k A³ , H1 is declared. 
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Under the two hypotheses, [ ]m
x n follows the Gaussian 

distribution. Under the 0H hypothesis, we have ~ 0,m mx N

( )2
0,~ 0,m mx N s and under 1H , ( )2

1,~ 0,m mx N s . We can expand 

(1) as follows:

[ ] [ ] 0,2

2 2
1 0, 1, 1,

1 1
ln

2

M
mm

m m
m m m m

z n x n
sw

w
s s s=

æ öæ ö æ ö
= - -ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷

è ø è øè ø
å%

(4)
 

where gm is defined as  m m mg = ( )0, 1,lnm m mg s s and definition 

of fm is that m m mf = ( )2 2
0, 1,m m mf s s- -- . In the absence of a pri-

mary user, the expectation and variance of z% under the 

two hypotheses are respectively given as follows,
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Ⅲ. Analysis

In this section, we investigate the performance of the 

detection and optimize the number of acquired samples 

subjected to the required false alarm and miss detection. 

In this analysis, we assume that the expectation and var-

iance of the random variable z% are smaller than their 

thresholds. We denote B and A as the lower and upper 

thresholds, as given in the algorithm. This assumption 

for each case of hypothesis can be expressed as 0 0 1 1, , , ,m s m s

0 0 1 1, , , ,A Bm s m s << . By this assumption, we can ap-

proximate the cumulative sums of the log-likelihood ra-

tio whenever it reaches the stop condition as ( )LLR n B

LLR n B» for issuing the H0 decision, and as ( )LLR n A»  for 

the decision H1. As confirmed by the previous work of 

Wald [9], we can obtain the proposition 1 statement.

3-1 Proposition 1

If the second moment of z% under the Hi is not zero, 

the number of samples taken by the sequential detection 

in Algorithm 1 is finite: ( ) 1iP n H< ¥ = , for { } 0,1i = .

Moreover, z%  is a linear summation of chi-square ran-

dom variables and its second moment always exists. In 
addition, it has other important properties, as described 
in proposition 2.

3-2 Proposition 2

Under the hypotheses of H0 or H1, a value of 

0 1
,   0h h ¹ can always be found that satisfies { }0

0

h z
HE e %

1h zE e =%
 and { }1

1
1h z

HE e =% .

Proof: See Appendix A. 

The properties of fundamental identity that are con-

firmed by [9] and proposition 2 allow us to obtain the 

following equations:
 

( ){ } { }( )0 0

0 0
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n
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where 
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HE e = . Similarly, we also 

have 
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and it is always 
( ){ }0

0
1

h LLR n

HE e = . 

We have made assumption as follows, 
 

( ) ( ){ }
( ) ( ){ }
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.

i
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H

H

E LLR n LLR n B B

E LLR n LLR n A A
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We can obtain that ( ) ( )( )i i

i

h LLR n h B
HE e LLR n B e£ » and

( ) ( )( )i i

i

h LLR n h A
HE e LLR n B e³ » . Hence, the false alarm 

and miss detection probability can be derived as in the 
following equations:

 

( ){ } ( )0 0 0

0
1 1

h LLR n h A h B
H F FE e P e P e= + - =

 

Therefore, 
 

0

0 0

1 h B

F h A h B

e
P

e e

-
=

- . (5)
 

In addition,
 

( ){ } ( )1 1 1

1
1 1

h LLR n h A h B
H M ME e P e P e= - + = .

 

Thus, the miss detection probability can be expressed 

as,
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1

1 1

1h A

M h A h B

e
P

e e

-
=

-
.

(6)
 

Given h0 and h1, equations (4) and (5) enable us to 

derive the thresholds A and B. It is easier to identify h0 

and h1 if we make the assumption that the large samples 

are taken in sequential manner (this assumption is true 

even when ASN is minimized using a suitable weight 

for each received signal). Due to the large number of 

samples, the weighted combining based log-likelihood 

signal z% can be assumed as the Gaussian random vari-

able that follows the distribution of ( )2
0 0,m sN under H0, 

and ( )2
1 1,m sN under H1. From proposition 2, we already 

obtained that ( ) 1i

i

h z
HE e =%

, { }0,1i = . Using the Laplace 

transform method, we can achieve the following,
 

( )
2 21

2 1
i i i i

i

i

h h
h z

HE e e
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       2

2 i
i

i

h
m

s
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Þ =

(7)
 

As confirmed by A. Wald in [9], we can rewrite the 

average sample number in each case of Hi as given by,

{ }
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0

* **1 F H F H
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P E P E
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E z
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%
,
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where ( ) ( )( )*

i iH HE E LLR n LLR n B= £  and ( )(**

i iH HE E LLR n LLR n A= ³

) ( ) )E E LLR n LLR n A= ³ . We can rewrite the above equations as 

given by:
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and
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We make the assumption that we can approximate the 

values of 0h Ae and 0h Be as follows:
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where is denoted as the big-o notation. Similarly, we 

have,
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Substituting the values of h0, h1, μ0, and μ1, we ob-

tain derivation of (8) and (9), as given in the following 

expressions:
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In following this analysis, our purpose is to select the 

weights yielding the lowest average sample number. Eq-

uivalently, the problem can be generalized as given:

Minimize { } { }{ }
0 1

,H stop H stopMax E N E N
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,.., ,.., 0
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m
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The problem can be resolved by dividing it into two 

minimization problems as shown in Algorithm 2, as de-

scribed as follows:

Algorithm 2

Step 1:
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We denote vector w
)

 as the selected weight of this 

step.

Step 2:

( ) ( )2 2 4 2
0, 1,

1 1
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M M
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We denote w
(

 as the selected weight of this step.

Step 3 :

The selected weights are identified as the given:

{ } { }
0 1min arg  min , , ,H stop H stopE N E Nw w w

ì ü
= í ý

î þ

) (

Ⅳ. Simulation 

In this part, we survey a case when BS selects 4M =  

SU users in its region. Each of the  SUs tolerates an 

amount of zeros mean AWGN with the variances, as 
given: 2

0, 1,  0.9,  0.8,  0.7ms = . In the case of PU pre- 
sence, the variances of the acquired signal at each CR 

are as follows, 2
1, 1.1,  1,  0.9,  0.8ms = . The desired false 

alarm and miss detection probability are the same and 

are set at the values from 10
—3

 to 0.1. Fig. 2 is shown 

to compare the average sample number of the proposed 

method to the equally combining method with conven-

tional detection and to the sequential detection using the 

equally gain combining (EGC) technique (which uses an 

equal weighting value). The conventional detection [8] 

using the fixed number of samples has the highest num-

ber of samples to achieve the required false alarm and 

miss detection probability. This is clear evident to show 

how robust is the sequential technique. In order to sur-

vey the performance of the proposed approach, we com-

pared the proposed method and sequential detection us-

ing the EGC technique, which uses equal weighting 

values. A significant reduction in the average sample num-

ber is noted for the proposed method. Fig. 3 shows how 

well the sequential detection in those schemes follows 

the designed false alarm and misses detection. The si- 

mulation shows that, at some points, especially in the 

small range of the designed false alarms and miss de-

tections, the conventional detection provides  a mildly 

Fig. 2. The comparison of the average sample number bet-
ween the traditional detection, the sequential de-
tection using the EGC technique vs. the proposed se-
quential detection using the MRC technique.

 

  

Fig. 3. The comparison of error in detection between the 
traditional detection, the sequential detection using 
the EGC technique vs. the proposed sequential de-
tection using the MRC technique.

 

 

higher false alarm than the requirements. Both of the 

schemes of sequential detection also guarantee the de-

signed requirements. 

Ⅴ. Conclusion

In this paper, we have concentrated on reducing the 

average sample number in cooperative spectrum sensing 
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via sequential detection. We have given an analysis for 

using the method of MRC in this model of spectrum 

sensing. Algorithms to obtain the model of sensing and 

optimization are also proposed and given during the 

analysis. Simulation shows that the proposed method has 

significantly reduced the time of sensing, which is very 

important in a Cognitive Radio Network.

Appendix A

In this part, we prove that under H0 or H1, it is al-

ways possible to find a value of h0, h1≠0 that satisfies 

{ }0

0
1h z

HE e =% and { }1

1
1h z

HE e =% .

Proof:

For the H0 case, we have
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Because x1, x2 …, xM are independently distributed, the 

integral can be rewritten as:
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Hence, we have:
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with the condition  that 0 0 max2, 1..
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We have that { }0

0
1h z

HE e =%
is equivalent to the equation 

as given,
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Taking the 1
st
 and 2

nd
 order of derivation, we achieve:
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We have 
( )

( )

2
0

2

0

0
g h

h

¶
>

¶
because tha t 2 2

0, 1,m ms s< . There-

fore, 
( )0

0

g h

h

¶

¶
 monotonically increases for ( )0 0max,h hÎ -¥ . 

As 0h ® -¥ , the 
( )0

0

g h

h

¶

¶
approaches to 

0,

1 1,

ln
M

m
m

m m

s
w

s=

æ ö
- ç ÷ç ÷

è ø
å

and as 0 0maxh h® , 
( )0

0

g h

h

¶

¶
approaches to +¥ . Therefore, 

a value 0h% always exists at which 
( )0

0

g h

h

¶

¶
 vanishes. We 

can see that ( )0g h monotonically decreases from +¥  to 

( )0g h% in the range ( )0,h-¥ % and monotonically increases 

from ( )0g h%  to +¥  in the range ( )0 0 max,h h% . On the other 

hand, we also have ( )0 0g = , so this is always

( ) ( )0 0g h g£% . Furthermore, we always have ( )0 0g ¹ , so 

a value of 0 0h ¹ exists when ( ) ( )0 0g h g<% where 

( )0 0g h = . Hence, we always find a value 0 0h ¹ which 

satisfies { }0

0
1h z

HE e =%
.

Similarly, we can achieve the same conclusion for the 

hypothesis H1.

Hence, the proposition is completely proved.
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