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Abstract: Recently, spectrum sensing has been intensively studied
as a key technology in realizing the cognitive radio. There have
been advances in the performance of spectrum sensing through
both multi-antenna and cooperative sensing schemes. In this pa-
per, the performances and complicated scenarios of the latest spec-
trum sensing schemes are analytically compared and arranged into
a technical tree while considering practical concerns. This paper
will give a macroscopic view of spectrum sensing and will also pro-
vide insight into future spectrum sensing works.

Index Terms: Cognitive radio, cooperative sensing, multi-antenna
sensing, spectrum sensing,

I. INTRODUCTION

Research has been performed on efficient spectrum usage
since it was reported that considerable licensed spectra exclu-
sively allocated to conventional wireless communication sys-
tems have been under-utilized [1]. For efficient spectrum utiliza-
tion, the cognitive radio will mostly likely be the most promising
technology due to its inherent spectrum sensing capability and
frequency-agile radio functions [2]. Spectrum sensing has the
especially important missions of finding the white space of li-
censed spectra and protecting the primary licensed users from
interference caused by cognitive radio communications. Ac-
cordingly, spectrum sensing has been widely researched as a key
technology for allowing cognitive radio communication within
the real world.

Spectrum sensing can be performed by various detection tech-
niques using a matched-filter [3], [4], a statistical feature of
the primary signal [5], [6], called feature detection, and a sim-
ple energy measurement [7]-[34]. Although the first two de-
tection techniques outperform the energy detection technique,
they require prior information about the primary signals, and
have a primary system-dependent performance. Heterogeneous
wireless communication systems licensed to different primary
spectra may overlap within a geographical region. In such cir-
cumstances, matched-filter detection or feature detection are too
costly for sensing multiple primary spectra, while energy detec-
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tion can operate with no prior information about primary sig-
nals. Accordingly, only the energy detection technique corre-
sponds to the general purpose of spectrum sensing for hetero-
geneous wireless communication systems. That is why energy
detection is the most intensively investigated sensing technique
and is also the focus of this paper.

In general, for the purpose of protecting primary users from
the interference caused by secondary communication, cogni-
tive radios are operated in a geographical far distant from
the primary system. Hence, the primary signal is received
by the secondary sensing node in a low signal-to-noise-ratio
(SNR) region below zero decibel where energy detection is very
poor [14], [18]. A failure in spectrum sensing means a missed
opportunity for secondary users to utilize the white space of the
spectrum or harmful interference to the primary users. There-
fore, sensing performance enhancement should be required for
both increasing the throughput of the secondary users and also
for protecting the primary users from unintended interference.

The sensing performance enhancement of energy detection
can be achieved by using multi-antennas at the sensing node
{14]-[17] or by cooperation between sensing nodes [18], [19].
Advances in multi-antenna and cooperative sensing are re-
viewed and in this paper. The aim of this study was to provide
a macroscopic view of spectrum sensing, especially with energy
detection, in the cognitive radio. In order to do so, a general-
ized sensing performance evaluation is given first, which allows
for greater understanding of the multi-antenna and the coop-
erative sensing performances. For multi-antenna sensing tech-
niques, the performances were analyzed and compared in con-
sideration to practical problems. For cooperative sensing, com-
plicated scenarios and practical considerations were arranged
into a technical tree in order to describe the technique in gen-
eral. The relationship between branches is also discussed in de-
tail. Finally, a summary describes the overall structure of the
research performed on the performance enhancement of energy
detection. Also, technical challenges for spectrum sensing are
discussed for future consideration.

The rest of this paper is organized as follows: Section II de-
fines common terminologies and introduces scenarios within
general spectrum sharing; Section III provides a general perfor-
mance evaluation of energy detection, Section IV analyzes and
compares the first methodology, or multi-antenna sensing tech-
niques, that is used for enhancing the energy detection’s sens-
ing performance, Section V provides a technical tree expressing
various cooperative sensing techniques, and, lastly, Section VI
summarizes the study.
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II. PRELIMINARY OF SPECTRUM SHARING

Before we investigate the advances in spectrum sensing, spec-
trum sharing environments are categorized into several groups,
and the terminology used for each scenario is summarized. The
aim of this section is to give a general overview of spectrum
sharing environments.

A. Open Spectrum Sharing

The spectrum sharing environment is classified first due to
the existence of access priorities among heterogeneous systems
within a spectrum. If every system has the same priority for ac-
cessing the spectrum resource, it is referred to open spectrum
sharing (OSS) [35]-[37].

In OSS, heterogeneous systems with different channel band-
width sizes co-exist in a common spectrum without any cen-
tralized coordinations. Hence, a distributed coordination used
in managing the interference and fair access opportunities is re-
quired and is called spectrum access etiquette in OSS [38].

For example, if a system with a large bandwidth channel too
frequently accesses the open spectrum or occupies it for a long
time, it is difficult for other systems to get an opportunity to
communicate in the spectrum. For fair spectrum sharing, the
traffic arrival rates of systems with different channel bandwidths
should be differentiated [35], [36]. For the same purpose, the
spectrum sensing threshold control is proposed in [37]. In OSS,
a system should check the spectrum availability through spec-
trum sensing before it start to transmit a signal. In this literature,
the sensing threshold value to detect the vacancy of a frequency
channel is set at higher value for a system with a wider channel
bandwidth. Therefore, the access opportunities between systems
with different channel bandwidths are balanced.

Open spectrum sharing scenarios have been developed pri-
marily for the industrial, scientific and medical (ISM) radio
bands [{35]-[37]. Recently, the OSS-operated radio frequency
has been extended to include licensed spectra for the purpose
of utilizing multi-mode terminals and inter-operability between
legacy wireless communication systems [39]. In such circum-
stances, frequency resources belonging to various systems com-
pose a spectrum pool. An end-user terminal can dynamically
access the spectrum pool with different radio resource units de-
pending on its application QoS and traffic condition of each sys-
tem. Accordingly, the term ‘dynamic spectrum access’ is used
for this category of spectrum sharing.

B. Hierarchical Spectrum Sharing

The most differentiated feature of hierarchical spectrum shar-
ing from OSS is that there is an access priority between the pri-
mary and secondary systems. What we call the primary system
is a legacy system operating in a licensed spectrum and its end-
user terminals. Although the licensed spectrum is exclusively
allocated to a primary system, secondary systems are allowed to
use the spectrum because of the considerable amount of unused
licensed spectra within time and space [1].

In order to share the primary spectrum, a secondary system
should not impart any harmful interference upon the primary
communication. According to how the harmful interference is

defined, hierarchical spectrum sharing is divided into two cate-
gories: Underlay and overlay spectrum sharing.

B.1 Underlay Spectrum Sharing

In underlay spectrum sharing, if the interference caused by
the secondary communication is received by the primary re-
ceiver under a predetermined threshold, the interference is
treated as harmiess. Therefore, while the harmless interference
condition is maintained, a secondary transmitter is permitted to
transmit its signal even if the primary link is communicating.
This category is interestingly termed ‘spectrum sharing.’

In order to satisfy the interference constraint condition, the
secondary transmitter must possess information about the inter-
ference channel gain between the secondary transmitter and the
primary receiver [40]. Hence, channel estimation using a known
signal and a feedback process between a primary receiver and a
secondary transmitter should be required with an extremely high
accuracy for the interference channel measurement!. In order to
realize this, the secondary user should equip a dual-mode sys-
tem as follows: one is for the secondary communication and the
other for the interference measurement and feedback between
the secondary transmitter and the primary receiver.

Although indirect interference channel measurement schemes
are presented in [41] and [42], they cannot provide an accu-
rate interference channel measurement for fading environments.
Therefore, developing effective schemes for interference chan-
nel measurement and feedback may be a bottle neck for the prac-
tical implementation of the underlay spectrum sharing scenario.

B.2 Overlay Spectrum Sharing

Different from the underlay spectrum sharing scenario, the
secondary transmitter may send a signal to a secondary receiver
only for a time period called the idle period, when the primary
communication is inactive. In order to detect the idle period of a
primary spectrum, spectrum sensing is the most important func-
tionality in realizing overlay spectrum sharing. According to the
amount of required prior information about the primary systems,
spectrum sensing techniques are divided into three types, as de-
picted in Fig. 2.

Matched filter detection: It is widely known that the detec-
tor using a matched filter is able to achieve the optimum perfor-
mance when a secondary sensing node can perform a coherent
detection of the primary signal [3], [4]. However, in order to use
the matched filter within spectrum sensing, the secondary sens-
ing node must be synchronized to the primary system and must
even be able to demodulate the primary signal. Accordingly, the
secondary sensing node has to have prior information about the
primary system such as the preamble signaling for synchroniza-
tion, pilot patterns for channel estimation, and even modulation
orders of the transmitted signal, et cetera.

Nowadays, heterogeneous wireless communication systems
licensed to different primary spectra may overlay one another in
a geographical region. In such circumstances, idle periods may

1Under-estimated channel gain value increases the secondary transmission
power, resulting in harmful interference to a primary receiver. An over-estimated
channel gain value decreases the secondary transmitter power, which satisfies
the interference constraint condition, but decreases the secondary link through-
put.
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Fig. 1. Three types of spectrum sensing techniques: Only energy detec-
tion requires no prior information about the primary signal.
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dynamically occur in multiple primary spectra. Therefore, in
order to sense the multiple primary spectra, it is necessary to
require that the secondary sensing node have receiver functions
for use in multiple primary systems and to be prepared to suffer
from demodulation complexity. Because of this, the matched-
filter sensing solution is too costly for sensing multiple primary
spectra.

Feature detection: The feature detection technique exploits
the statistical feature built into a primary signal. Generally, the
background noise and interference do not correlate to time or
frequency domains. Hence, if the secondary user has statistical
information about the correlation feature of the primary signal,
it can increase sensing accuracy [5], [6]. For instance, the Gaus-
sian minimum shift keying (GMSK) used in the Global System
for Mobile Communications (GSM) network has inherent cy-
clostationarity, so that the secondary user can effectively detect
the GSM signal by using it. However, this feature detection can
only be applicable for few primary signals with such characteris-
tics and requires an increase in cost and complexity for the time
shift correlation process and frequency-domain transformation,
respectively [44].

Energy detection: While the matched filter and feature de-
tection capabilities require prior information about primary sig-
nals, no primary signal information is required for the energy
detection technique. As depicted in Fig. 2, the only process re-
quired for the energy detector is that the primary signal energy is
able to be measured within a specified duration. Next, the detec-
tor simply determines whether or not the measured signal energy
is over the predetermined threshold level. When considering the
general purpose of spectrum sensing with low complexity, the
energy detection technique is decidedly the most feasible spec-
trum sensing scheme for detecting the white space of multiple
primary spectra licensed to heterogeneous wireless communi-
cation systems. This explains why this paper focuses on spec-
trum sensing using energy detection. However, because energy
detection has poor performance in comparison to matched fil-
ter and feature detections, research conducted on enhancing the
performance of energy detection has been the most intensively
studied research topic in the spectrum overlay scenario. In or-
der to enhance the performance of energy detection, a number
of spectrum sensing schemes using multi-antenna and coopera-
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Fig. 2. Sensing and transmission structure for energy detector.

tion between secondary sensing nodes have been developed [7}-
134], and it is challenging to provide a macroscopic view of the
conventional works,

III. GENERALIZED PERFORMANCE OF ENERGY
DETECTOR

This section firstly provides a generalized system model for
spectrum sensing as well as evaluating the energy detector’s per-
formance in terms of detection and false alarm probabilities.
The generalized energy detection performance dealt with in this
section is the basis for the technical comprehension of the ad-
vanced energy detection techniques such as multi-antenna spec-
trum sensing and cooperative sensing as discussed in Sections
IV and V, respectively.

A. System Model for Spectrum Sensing

According to the basic concept of overlay spectrum sharing,
the secondary user should sense the existence of the primary
signal within the licensed spectrum prior to the secondary trans-
mission. Based on this principle, each secondary transmission
frame duration is divided into a sensing period and a data trans-
mission period, as shown in Fig. 2. Sensing duration N is de-
fined as the length of the sensing period in which the secondary
user ceases transmission and then senses the primary spectrum.
If any primary user signal is detected during the sensing period,
the secondary user stops the transmission until the primary user
signal is again undetectable. Otherwise, if no primary user sig-
nal is detected, the secondary user continues transmission during
the data transmission period.

Apparently, longer and frequent sensing periods improve
sensing performance but shorten the data transmission period.
Conversely, shorter and more sporadic sensing periods degrade
sensing performance but lengthen the data transmission period.
Hence, there is a tradeoff between sensing performance and sec-
ondary user throughput. Using this tradeoff, throughput opti-
mization of sensing duration [7] or secondary frame duration [§]
has been attempted. However, this study concentrates on the
ways of improve sensing performance under the assumption of
a fixed sensing duration and period by introducing a variety of
traditional and newly developed detection techniques.

B. Sensing Performance

Two hypotheses are related to the detection of primary user
signals: The null hypothesis Hg and the alternative hypothesis
H;. Hq describes a situation in which a primary user signal does
not exist in the primary spectrum, and H; expresses the case
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in which a primary signal does exist. The objective of energy
detection is to estimate which hypothesis is more credible and
to decide whether H or ‘H; is correct by measuring the energy.

The sensing performance of the energy detector can be evalu-
ated via two general performance metrics: The false alarm prob-
ability Pr, and the detection probability Pp. A false alarm
event occurs when the energy detector decides upon H; when
the correct decision is Hj, the probability of which is defined
as the false alarm probability. When a false alarm happens, the
secondary user does not exploit the spectrum which is actually
empty, and loses an opportunity to transmit its data. Hence, the
lower the false alarm probability, the higher is the throughput of
the secondary user. On the other hand, the detection probabil-
ity is defined as the probability of the energy detector making
a correct decision for H. If the detection fails, or a “miss de-
tection” occurs, the secondary user starts an undesirable trans-
mission in the primary spectrum where the primary user is also
transmitting, and, therefore causes a strong interference with the
primary user signal. This degrades the signal quality of the pri-
mary communication and violates the fundamental doctrine of
overlay spectrum sharing. Therefore, when the detection proba-
bility is higher, it is then possible to provide enhanced protection
for the primary user.

However, there is a tradeoff relationship between the spec-
trum usage efficiency (i.e., the false alarm probability) and the
sensing performance (i.e., the detection probability). As illus-
trated in Fig. 3, although the proportion between the false alarm
probability and the detection probability can be adjusted via
threshold control, it is not possible to simultaneously attain a
low false alarm probability and a high detection probability or a
low miss detection probability, as long as the probabilistic char-
acteristics of the received signal are fixed. In order to enhance
the sensing performance, the probability density function (PDF)
of each hypothesis should be steepened or the distance between
two PDFs needs to be lengthened. This can be accomplished via
two methods as follows: 1) Intensifying the received SNR of the
primary user measured at the secondary user or 2) increasing the
dimension or degree-of-freedom of the received signal space.

Intensifying the received SNR is very challenging within a
practical situation, due to noise uncertainty, shadowing, and
multi-path fading, whose effects are neither predictable nor able
to be compensated for [9]. Thus, we focus upon increasing the
degree-of-freedom of the received signal space. If the secondary
user receives an increased number of observation samples, they
are combined into an aggregated observation and the final deci-
sion can be made with more reliability. The sources for degree-
of-freedom are mainly time and space. If the secondary user
sums N samples of received energy within a sensing period, as
depicted in Fig. 2, we obtain N degree-of-freedom in the time
domain. However, as N increases, the time fraction that the sec-
ondary user can effectively use for data transmission decreases
and, hence, restricts the increased use of the degree-of-freedom
within the time domain.

Therefore, the degree-of-freedom of the sensing signal space
should be expanded into the spatial domain. For practical sit-
uations, if the secondary user is equipped with M antennas or
M secondary users are engaged in cooperative sensing, we have
an opportunity for exploiting M degree-of-freedom within the
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Fig. 3. PDF of test statistics. Miss detection and false alarm cannot be
reduced simultaneously.

spatial domain. As a simple and basic sensing scenario, it is
assumed that M nodes are located at spatially independent po-
sitions, so M degree-of-freedom can be fully exploited during
the energy detection process, which will provide a performance
basis to compare with the sensing performance in the correlated
channel between antennas or adjacent sensing nodes in multi-
antenna sensing and cooperative sensing, respectively.

For a given degree-of-freedom obtained from M nodes and a
sensing duration of IV samples, suppose Z,,(n) is the received
signal at the m-th sensing node and s(n) is the common primary
user signal that we wish to detect. The signal s(n) is transmitted
over a fading channel whose gain is h,,(n) and then corrupted
by the noise w,,(n). In this case, the detection problem is for-
mulated as:

(D

form = 1,2,---,M and n = 1,2,---, N. The signal s(n) is
assumed to be phase-shift keying (PSK) modulated with the re-
ceived signal power P. The channel gain h,,(n) follows an in-
dependent and identically distributed (i.i.d.) Rayleigh fading
channel, i.e., hy,(n) ~ CN(0,02). The noise wy,(n) is an
ii.d. zero-mean, complex-valued additive white Gaussian noise
(AWGN), i.e., wy,(n) ~ CN(0,02).

As mentioned before, we employed an energy detector, which
combines the measured energy during the sensing duration
along the sensing nodes. Assuming each node and each sam-
ple is independent, the energy is combined with equal gain. The
decision rule can be written as:

N M H,
T=Y"Y bm@ = 7

n=1m=1 0

@

where T is the test statistic for the binary hypothesis test and
7) is the threshold [10]. In order to derive the false alarm and
detection probabilities, the probabilistic characteristics such as
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the PDF of the test statistic are first developed for both 7 and
Hy. T is the sum of the squared Gaussian random variables and
follows a Chi-squared distribution with a degree of freedom of
2MN. When assuming sufficiently high degree of freedom, the
Chi-squared distribution approaches the Gaussian distribution
by the central limit theorem (CLT) [11]. According to the CLT,
the detection problem (1) can be rewritten as:

Ho : TNN(MNO'?U,]V[NO'ﬁ})

Hi: T ~N(MN(Poj, + 03), MN(Poj +02)?).  (3)

Using the probabilistic model in (3), we can obtain detection
probability Pp and the false alarm probability Prs. Pp and
Pr 4 have the following relationships [12], [13]:

Po(M) = Q(ﬁ(@*uﬂm _ VMNw)

Pp(M) = Q(VMNy+ (1+7)Q ™ (Fp)) @)
where Q(-) is the tail probability of the Gaussian distribution
and v = Po?2 /02 is the SNR of the primary user measured at
the secondary sensing node.

The above relationship between the detection and false alarm
probabilities is depicted in Fig. 4. We assume a very low SNR
for the primary user: v = —5 dB, which is necessary in order to
detect the primary user even when the signal experiences deep
fade. The sensing duration is fixed to N = 10 samples. Due
to the intrinsic tradeoff between the two performance metrics,
it was already shown that achieving higher detection probability
and low false alarm probability is difficult. If the detection prob-
ability increases, then the false alarm probability also increases.

The sensing performance curve is shifted in the direction of
improving both performance metrics only when the additional
degree of freedom is achieved. In Fig. 4, as the degree of free-
dom MM increases, the detection probability increases while the
false alarm probability decreases without sacrificing any other
metrics such as secondary user throughput. With this in mind,
we investigate how to achieve an additional degree of freedom
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in spectrum sensing, accomplished by equipping multiple an-
tennas with a secondary user or cooperating with neighboring
nodes by exchanging sensing information.

IV. SENSING WITH MULTI-ANTENNA

Spectrum sensing schemes exploiting multi-antenna setups
are investigated in [13], [14]-{16]. Ideally, it can be assumed
that the channels for each antenna are faded independently, and
the performance of the multi-antenna-aided spectrum sensing is
largely identical to the result in (4).

Taking advantage of different fading channels for multiple
antennas, the maximum-ratio-combining (MRC) or antenna se-
lection increases the spectrum sensing performance [14]. How-
ever, the secondary user utilizing energy detection cannot co-
herently receive the primary signal due to unavailability of the
primary signal information, including the modulation technique,
pilot signaling and so on. Hence, unfortunately, any schemes re-
quiring the channel measurements cannot be practically imple-
mented with the energy detector scheme,

In order to evaluate the practical performance of multi-
antenna-aided spectrum sensing, one more thing that we should
discuss is the correlation between antennas. As intuitively ex-
pected, the sensing performance becomes degraded as the corre-
lation between antennas increases. In IEEE 802.22 wireless ru-
ral area network (WRAN)), the secondary WRAN system should
be located outside of the keep-out region which is set for pro-
tecting the primary users. The radius of the keep-out region is
generally assumed to be over one hundred kilometers. Accord-
ingly, such a large distance between the primary transmitter and
the secondary user generates a small received-channel angular
spread value, which results in a highly correlated channel be-
tween antennas at the secondary receiver [17].

A. Simple Energy Detection with Multi-Antenna

The performance of a simple energy detection that consid-
ers the correlated antennas is investigated in [13]. The detection
problem (2) that considers the antenna correlation can be written
as:

Ho: T ~N (MNol, MNal)

M
Hy:T~N (MN(Po—i +02), N Y (Poirn, + afu)?>

m=1
&)

-, M are the eigen-values of the follow-

P,
E3
Ji2

i,7=1,2,--., M,and p (0 < p < 1) is the correlation between
adjacent antennas.

From the detection problem in (5), we can calculate the de-
tection and false alarm probabilities as follows:

where Ap,,m € 1,2,
ing correlation matrix:

1<
P>

Ry

M
Poo(M) = Q | (ne = MN(y + 1)) [\ [N 3" (vAm 4 1)?

m=1
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NZ (7/\m)2

YAm ©)

M
1
Pre(M)=Q |Q Z (YAm + 1)2 + yVMN
m=1
(6)
where the decision threshold is determined as:
M
e =Q  (Ppe)y [N DY (vAm +1)2+ MN(y+1). (D)
m=1

B. Optimum Energy Detection with Multi-Antennas

In Section IV-A, the sensing performance of the simple en-
ergy detection was shown in a correlated channel. However, in
a correlated channel, the optimum sensing performance can be
achieved by the likelihood ratio test (LRT) [10]. In this case, the
decision rule can be expressed as:

T= Z Z vH (n 2o ®)

n=1m=1 HD
where Y,,,(n) = é 7)\ Tomg, X(n), m € {1,2,..., M} when
X(n) = [z1(n), z2(n), ..., zpr(n)], and Ay, and u,, are the m-

th eigenvalue and eigenvector of the antenna correlation matrix,
respectively.

Applying the CLT to (8) for the same reason as in (3), the
detection and false alarm probabilities can be calculated in (9)
where the decision threshold is given as

Mo =Q  (Ppo)y | N Y (vA

m=1

+Nz'y)\

C. Performance Comparison of Multi-Antenna Sensing Schemes

The sensing performances of the energy detection in (6) and
the optimum detection in (9) are compared with that of single
antenna case (M=1) in (4). For any values of M and ~, the
following relationship can be determined:

;1_>m1 Pp,(M) > ;I_)Inl Ppe(M) > Pp(1)

lim Ppo(M) < lim Pre(M) < Pg(1) (10)
1 p—1

p—
where the number of antennas M is larger than one.

The first observation of (10) is that sensing with multiple an-
tennas always outperforms sensing with a single antenna even if

channels between the antennas are highly correlated. There is
another observation of (10) in that the optimum LRT detection
outperforms simple energy detection in both the detection and
false alarm probabilities in the correlated antenna case. The per-
formance difference between them comes from the differently
weighted matrices. In the optimum LRT detection, the weighted
matrix is determined based on the antenna correlation while all
spatial channels are equally weighted for the simple energy de-
tection. However, additional complexity is required in order to
calculate the weighted matrix in (8) via the optimum LRT de-
tection.

For the case of p = 0, another relationship among the sensing
performances in (4), (6), and (9) can be made as follows:

lim Ppo(M) = lim Ppe(M) = Pp(M)
p—0 p—0

lim Pr,(M) = lim Pre(M) = Pp(M). (1)
This result show that if the correlation is very low, the sensing
performance of the energy detection and the optimum LRT de-
tection closely approaches the generalized sensing performance
in (4). Therefore, in such a case, the energy detection is neatly
the optimum. And, its sensing performance can be improved

upon continuously as the number of antennas is increased.

V. COOPERATIVE SENSING

The energy detector is generally operated in a very low
SNR region. Hence, if a signal from the primary transmitter is
severely shadowed as well as faded, a secondary sensing node
should experience difficulty in deciding whether the primary
spectrum is unused or occupied by the primary system. From
the small scale point of view, a spatially faded primary signal
can be effectively sensed by using a multi-antenna. However, it
cannot be the solution to the secondary sensing node which is
located in a deeply shadowed geographical region from the pri-
mary transmitter, which can be overcome by cooperative sensing
techniques.

Cooperative sensing takes advantage of geographical varieties
of secondary sensing nodes which experience different chan-
nel conditions. As depicted in Fig. 5, spatially distributed sens-
ing nodes measure the signal from the primary transmitter, and
report the measurement results to the fusion center. The fu-
sion center makes the final decision about the primary spectrum
availability based on the collected measurement results. There-
fore, even if some of the sensing nodes are shadowed from the
primary transmitter, the sensing performance can be improved
upon via the primary signal measurements of other unshadowed
sensing nodes.
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Due to the simple system model of multi-antenna sensing,
the performances of the multi-antenna sensing schemes can be
clearly analyzed and compared using definite mathematical ex-
pressions from the previous section. However, for cooperative
sensing, system models cannot be unified because there are too
many variations in sensing scenarios. Correspondingly, a direct
performance comparison between different schemes is usually
unavailable since one cooperative sensing scheme solves a prob-
lem, but still requires additional problems to be solved by other
proposed schemes.

In this situation, it is effective to attain insights within a
technical area by arranging the conventional works as a tech-
nical tree, as is shown in Fig. 6. In this technical tree, coop-
erative sensing is categorized into two main branches: Coop-
erative sensing using soft-information and cooperative sensing
using hard information. Each issue branches into performance
evaluations and has its own practical problems and solutions.

A. Soft-Information Decision Fusion

In cooperative sensing techniques using soft-information,
each sensing node reports its raw primary signal measurement in
(1) to the fusion center. In this case, the index m in (1) denotes
a secondary sensing node. If the local sensing information of M
secondary users is perfectly delivered to the fusion center, the
spectrum sensing performance of the secondary network is also
exactly identical to the result shown in (4). However, there are a
number of techniques that can enhance the cooperative sensing
performance, as well as issues that should be considered for a
practical implementation of the cooperative spectrum sensing in
the real world.

A.1 Performance in a Correlated Channel

Similarly to the multi-antenna sensing performance with a
correlated channel, the performance of cooperative sensing is
degraded by secondary sensing nodes experiencing correlated
shadowing [19]. For instance, if the distance between two ad-
Jacent secondary sensing nodes is between 40 and 80 meters,
the correlation value between the two nodes is over 0.5 at 1.9
Ghz [45]. If cognitive radios intend to involve a small coverage
network, cooperative sensing should be designed to reflect the
correlation. '
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A.2 Weighted-Fusion

Sensing nodes should be located in geographically indepen-
dent positions in order to avoid correlated channels. When con-
sidering such a case, the distance between the primary transmit-
ter and each sensing node is different. Hence, as depicted in Fig.
5, the average SNR values 7; of the measured primary signal at
each sensing node are different. Intuitively, sensing informa-
tion reported by a sensing node with a higher SNR from that
of the primary transmitter provides more credits in determin-
ing the existence of the primary signal. Accordingly, in order
to enhance the cooperative sensing performance, the sensing in-
formation from different sensing nodes are properly weighted
and fused based on the SNR values of the received primary sig-
nal [20]-[22].

In [20], the performance of the optimum LRT detector is pro-
posed in the same manner as the optimum LRT detector for the
multi-antenna in the previous section, and evaluated. Using the
LRT detector, the fusion center can reflect the different detec-
tion probabilities of sensing nodes with different average SNR
values, and fuse the sensing information from a sensing node
with a higher SNR, thus indicating more importance.

In [21], the average performance of cooperative sensing is
evaluated with respect to location probability for uniformly dis-
tributed secondary sensing nodes. The LRT-based cooperative
sensing performance should be evaluated differently according
to channel model because the LRT detector directly uses the
PDFs of the received primary signal at the sensing nodes. While
the Chi-square distribution is assumed in [20] and [21], the case
considering the log-normal fading model is dealt with in [22}.

In [20], it is shown that the LRT-based cooperative detector
outperforms the equal-gain-combining (EGC) detector in (1).
However, there is a practical implementation difficulty of the
cooperative sensing techniques using the LRT. In order to per-
form the LRT, the fusion center must have information about
the channel model and the average SNR values between sens-
ing nodes and the primary transmitter. Therefore, if the SNR
values are not accurately estimated or the statistical character-
istics of channel models are different from the actual values,
the performance of the LRT-based cooperative sensing will be
degraded. Accordingly, the performance of the LRT-based co-
operative sensing needs to address the SNR-estimation errors.
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A.3 Consideration of SNR-Estimation Errors

SNR-estimation errors can be generated by two main causes:
The inherent estimator error and the inaccurate source sam-
ples for the estimator. When considering both causes, the per-
formance degradation of cooperative sensing due to the SNR-
estimation errors is analyzed in [23] assuming the finest SNR es-
timator with the Cramer-Rao-lower-bound performance, which
shows that the required number of sensing nodes to satisfy a pre-
determined sensing accuracy should be large depending on the
SNR-estimation errors.

However, from a practical implementation point of view, most
of the conventional SNR estimators might not be applicable to
secondary sensing nodes performing the energy detection be-
cause they need some prior information about the primary sig-
nals such as coherent received signal sampling, the PDFs of the
primary signals, or the Doppler shift of the primary signal’s
spectrum [46], [47]. As we know, the most favorable charac-
teristic of the energy detector is that it requires no prior infor-
mation about primary signals. Therefore, investigations on SNR
estimators taking advantage of the statistical characteristics of
the background noise floor? should become a key for practical
implementations of cooperative sensing.

As an example for overcoming the SNR-estimation errors in
cooperative sensing, a cooperative sensing scheme utilizing ran-
dom matrix theory is proposed in [24]. In this approach, only the
maximum and minimum eigenvalues of the covariance matrix,
composed by collecting sensing information, are used to deter-
mine the existence of the primary signal. Therefore, the SNR-
estimation process is not needed. Although this scheme requires
additional computational complexity for calculating the eigen-
values, its performance is better than that of the EGC detector.

A.4 Sensing Information Feedback Problem

Since the sensing information from the sensing nodes is re-
ported to the fusion center, additional radio resource consumed
for reporting should be considered. Although the performance is
generally improved upon as the number of cooperative sensing
nodes increases, the amount of the sensing information feed-
back burden is proportional to the number of cooperative sens-
ing nodes [25]. Therefore, the tradeoff between the overhead
reduction for the sensing information reporting and the cooper-
ative sensing performance needs to be an important design con-
sideration.

In [25], the performance optimization in consideration of the
tradeoff is analyzed. However, the objective function defined by
a linear combination of the sensing performance and the sensing
information feedback burden generates an ambiguous quantity?,
hence it is difficult to apply when evaluating the performance
of the cooperative sensing scheme. Accordingly, a more general
frame work is required in evaluating this tradeoff frame.

Alternatively, feedback information reduction schemes are in-
vestigated in [26] and [27]. In those papers, the soft information

2Statistical characteristics of the background noise floor are the only informa-
-tion used by the general energy detector.

3Generally, the sensing performance metrics such as detection or false-alarm
probabilities can be expressed in percentile, and the amount of feedback infor-
mation can be measured in bits per second. However, the linear combination of
those two quantities is hard to express in a quantity unit.

of a secondary sensing node is quantized into two bits. In (1),
the original detection problem results in binary states. However,
in [26], the presence of the primary signal is expressed via four
states as follows: Strong empty, weak empty, weak presence and
strong presence. Because thresholds for the four states are given
heuristically, this work shows that cooperative sensing with
two-bit-quantized soft information can almost achieve sensing
performance using perfect soft information. A more advanced
soft information quantization scheme is proposed in [27]. This
scheme also uses two bits for the soft information quantization.
Different from [26], thresholds to divide the primary signal in-
formation into four states are analytically proposed consider-
ing probability distribution of the fading channel between the
primary transmitter and the secondary receiver. Results of this
work confirm that the sensing performance from the perfect soft
information fusion can almost be achieved by only a two-bit-
quantized primary signal strength level.

Another concern to the feedback problem is how to deliver
the sensing information to the fusion center. So far there have
been few scenarios for realizing the feedback information de-
livery. In [28], wireless local area network (WLAN) delivers
the sensing information to the fusion center. However, WLAN
has a very small coverage area with a radius of less than 15 me-
ters. If cooperative sensing is operated in this small area, the
sensing information between sensing nodes will experience a
highly correlated shadow fading. Accordingly, in this case, it
is difficult for the cooperative sensing to experience the gain of
sensing performance from the geographical diversity of the sec-
ondary sensing nodes. In addition, the feedback can be transmit-
ted using a spread spectrum transmission methodology without
harmful interference to the primary system [29]. This kind of
secondary transmission is known as underlay spectrum sharing,
as classified in Section II. Above all, although the cognitive ra-
dio identifies and utilizes an empty spectrum for the secondary
usage, it seems to be a paradox that we are able to tell that the
legacy licensed systems needs to be used for sensing informa-
tion reporting.

B. Hard-Information Decision Fusion

In cooperative sensing using hard-information decision fu-
sion, a sensing node reports only binary state information to
the fusion center. The binary state information is generated by
each sensing node, which has its own local energy detector. Ac-
cordingly, the hard-information decision fusion requires mini-
mized radio resource consumption for sensing information feed-
back. Generally, the performance of cooperative sensing using
hard-information is worse than that using soft-information [20].
However, from a practical implementation point of view, coop-
erative sensing with hard-information is worth considering due
to its minimized feedback burden.

B.1 Basic Fusion Rules

There are three decision fusion rules in cooperative sensing
using hard-information: The AND fusion rule, the OR fusion
rule and the majority fusion rule. The AND fusion rule declares
the existence of the primary signal H; if all sensing nodes re-
port the decision state H;. Using the OR fusion rule, H; is true
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Fig. 7. Cluster-based cooperative sensing.

if H, is reported by at least one sensing node. The fusion center
adopting the majority rule decides upon #; when the number of
H; results is larger than the number of Hg results. The major-
ity fusion rule is considered as a simple suboptimal fusion rule
[31]. The OR fusion rule performs best for detection probabil-
ity, and the worst for false alarm probability. The AND fusion
rule performs the worst in detection and false alarm probabili-
ties, opposite that of the OR fusion rule.

B.2 Local Decision and Feedback Errors

In order to perform hard-decision fusion, each sensing node
has a local energy detector for making its own decision. For the
cooperative sensing, each sensing node has a different sensing
accuracy because of the different geographical position of each
sensing nodes with respect to the primary transmitter. Hence,
local decision errors from sensing nodes with low SNR values
from the primary transmitter degrade the sensing performance.
It is pointed out in [32] that the sensing performance is not
always improved upon when the number of sensing nodes in-
creases in cooperative sensing using hard-information fusion.
Therefore, only selected sensing nodes with SNR values over
a predetermined threshold have to report their decisions while
the unselected sensing nodes remain silent. From this fact, we
can deduce that hard-information decision fusion is also not free
from the SNR estimation between the primary transmitter and
the sensing nodes, and the estimated SNR values should be de-
livered to the fusion center.

The feedback error of the sensing information may occur
within cooperative sensing using hard information. In contrast
to the soft information feedback error, the hard information may
cause a totally opposite decision at the fusion center. Hence,
the feedback error of hard-information degrades the sensing
performance more severely in comparison with that of soft-
information using cooperative sensing.

In hard-information decision fusion, the effect of feedback er-

ror on the sensing performance is investigated of [28]. Accord-
ing to the results in [28], the feedback error limits the sensing

performance of hard-information decision fusion. Accordingly, |

it is suggested that diversity techniques, such as space time or
frequency coding schemes, should be adopted for mpre reliable
hard sensing information feedback.
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B.3 Cluster-based Cooperative Sensing

Cluster-based sensing schemes have been proposed in order
to utilize selection diversity in cooperative sensing using hard-
information decision fusion. In cluster-based cooperative sens-
ing, a whole sensing node is divided into several clusters. A clus-
ter head exists in a cluster for collecting sensing information, as
well as for reporting the collected information to the fusion cen-
ter, as depicted in Fig. 7 [33], [34].

It is generally assumed that the cluster head and sensing nodes
within a cluster are located in close proximity to each other.
Hence, the wireless link between a cluster head and its sensing
nodes is reliable enough for exchanging the sensing informa-
tion without error. For the same reason, the radio resources con-
sumed for exchanging sensing information within a cluster are
minimized. Accordingly, the feedback burden for the sensing in-
formation delivery or the feedback error within a cluster are not
research issues. However, we have to consider the same feed-
back error problem between the cluster head and the fusion cen-
ter. Therefore, for enhanced performance of the cluster-based
sensing scheme, we should be able to choose a cluster head that
is able to make the most credible local decision and then re-
port the local decision to the fusion center with the most reliable
channel [33], [34].

Just as in [28], it is shown that the sensing information re-
porting error dominantly limits the performance of cluster-based
sensing. In order to minimize the reporting error, a sensing
node with the maximum SNR between the sensing node and
the fusion center is elected as a cluster head. It is pointed out
in [34] that a larger number of clusters or sensing nodes does
not guarantee a more improved sensing performance. Based on
the tradeoff between the sensing information reporting overhead
and sensing accuracy, a cluster head selection scheme is pro-
posed to enhance sensing performance. Subsequently, the op-
timum cluster number is analyzed in terms of the number of
sensing nodes and the average SNR for them.

VI. SUMMARY AND DISCUSSION

This paper studied sensing performance enhancement tech-
niques including multi-antenna sensing and cooperative sensing
within cognitive radios. In order to clarify the overall relation-
ship between them, a summary of this paper is given in Fig. 8.
The whole spectrum sensing techniques introduced in this paper
are divided into two categories: Sensing performance enhance-
ments available in a single sensing node, and those achieved via
cooperation between sensing nodes. Each category has elemen-
tal sensing techniques dealt with in detail as part of this paper.

Through reviewing a number of advanced sensing techniques,
we were able to reach a conclusion that further investigations
are needed for ‘Intermediate Solutions’ in the multiple sensing
nodes cooperation category of Fig. 8. When developing more
practical parameter estimation techniques, it might be possible
to create a realizable sensing scheme which can closely achieve
the optimum LRT performance. Based on our survey, one prac-
tical concern is raised for the practical implementation of co-
operative sensing: The methodologies for sensing information
exchange. Conventional scenarios for this seem unrealistic. In
order to realize cooperative sensing, a multiplexing scheme and
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protocols for the sensing information, reporting of plural sens-
ing nodes should be investigated as part of future works.
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