• Title/Summary/Keyword: Convergence pattern

Search Result 1,021, Processing Time 0.029 seconds

Machine Fault Diagnosis Method based on DWT Power Spectral Density using Multi Patten Recognition (다중 패턴 인식 기법을 이용한 DWT 전력 스펙트럼 밀도 기반 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min;Vununu, Caleb;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1233-1241
    • /
    • 2019
  • The goal of the sound-based mechanical fault diagnosis technique is to automatically find abnormal signals in the machine using acoustic emission. Conventional methods of using mathematical models have been found to be inaccurate due to the complexity of industrial mechanical systems and the existence of nonlinear factors such as noise. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose an automatic fault diagnosis method using discrete wavelet transform and power spectrum density using multi pattern recognition. First, we perform DWT-based filtering analysis for noise cancelling and effective feature extraction. Next, the power spectral density(PSD) is performed on each subband of the DWT in order to effectively extract feature vectors of sound. Finally, each PSD data is extracted with the features of the classifier using multi pattern recognition. The results show that the proposed method can not only be used effectively to detect faults as well as apply to various automatic diagnosis system based on sound.

A Study of Evaluation System for Facial Expression Recognition based on LDP (LDP 기반의 얼굴 표정 인식 평가 시스템의 설계 및 구현)

  • Lee, Tae Hwan;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.23-28
    • /
    • 2014
  • This study proposes the design and implementation of the system for a facial expression recognition system. LDP(Local Directional Pattern) feature computes the edge response in a different direction from a pixel with the relationship of neighbor pixels. It is necessary to be estimated that LDP code can represent facial features correctly under various conditions. In this respect, we build the system of facial expression recognition to test LDP performance quickly and the proposed evaluation system consists of six components. we experiment the recognition rate with local micro patterns (LDP, Gabor, LBP) in the proposed evaluation system.

Proposed Approaches on Durability Enhancement of Small Structure fabricated on Camera Lens Surface (카메라 렌즈 표면에 형성된 미세 패턴의 내구성 향상 기법 제안)

  • Park, Hong Ju;Choi, In Beom;Kim, Doo-In;Jeong, Myung Yung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.467-473
    • /
    • 2019
  • In this study, approached to improve durability of the multi-functional nano-pattern fabricated on the curved lens surface using nanoimprint lithography (NIL) was proposed, and the effects of the proposed methods on functionality after wear test were examined. To improve the mechanical property of ultraviolet(UV)-curable resin, UV-NIL was conducted at the elevated temperature around $60^{\circ}C$. In addition, micro/nano hierarchical structures was fabricated on the lens surface with a durable film mold. Analysis on the worn surfaces of nano-hole pattern and hierarchical structures and measurements on the static water contact angle and critical water volume for roll-off indicated that the UV curing process with elevated temperature is effective to maintain wettability by increasing hardness of resin. Also, it was found that the micro-scale pattern is effective to protect nano-pattern from damage during wear test.

A Design of Fuzzy Classifier with Hierarchical Structure (계층적 구조를 가진 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.355-359
    • /
    • 2014
  • In this paper, we proposed the new fuzzy pattern classifier which combines several fuzzy models with simple consequent parts hierarchically. The basic component of the proposed fuzzy pattern classifier with hierarchical structure is a fuzzy model with simple consequent part so that the complexity of the proposed fuzzy pattern classifier is not high. In order to analyze and divide the input space, we use Fuzzy C-Means clustering algorithm. In addition, we exploit Conditional Fuzzy C-Means clustering algorithm to analyze the sub space which is divided by Fuzzy C-Means clustering algorithm. At each clustered region, we apply a fuzzy model with simple consequent part and build the fuzzy pattern classifier with hierarchical structure. Because of the hierarchical structure of the proposed pattern classifier, the data distribution of the input space can be analyzed in the macroscopic point of view and the microscopic point of view. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Clustering Algorithm using the DFP-Tree based on the MapReduce (맵리듀스 기반 DFP-Tree를 이용한 클러스터링 알고리즘)

  • Seo, Young-Won;Kim, Chang-soo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.23-30
    • /
    • 2015
  • As BigData is issued, many applications that operate based on the results of data analysis have been developed, typically applications are products recommend service of e-commerce application service system, search service on the search engine service and friend list recommend system of social network service. In this paper, we suggests a decision frequent pattern tree that is combined the origin frequent pattern tree that is mining similar pattern to appear in the data set of the existing data mining techniques and decision tree based on the theory of computer science. The decision frequent pattern tree algorithm improves about problem of frequent pattern tree that have to make some a lot's pattern so it is to hard to analyze about data. We also proposes to model for a Mapredue framework that is a programming model to help to operate in distributed environment.

Fabrication of Micro-/Nano- Hybrid 3D Stacked Patterns (나노-마이크로 하이브리드 3차원 적층 패턴의 제조)

  • Park, Tae Wan;Jung, Hyunsung;Bang, Jiwon;Park, Woon Ik
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.6
    • /
    • pp.387-392
    • /
    • 2018
  • Nanopatterning is one of the essential nanotechnologies to fabricate electronic and energy nanodevices. Therefore, many research group members made a lot of efforts to develop simple and useful nanopatterning methods to obtain highly ordered nanostructures with functionality. In this study, in order to achieve pattern formation of three-dimensional (3D) hierarchical nanostructures, we introduce a simple and useful patterning method (nano-transfer printing (n-TP) process) consisting of various linewidths for diverse materials. Pt and $WO_3$ hybrid line structures were successfully stacked on a flexible polyimide substrate as a multi-layered hybrid 3D pattern of Pt/WO3/Pt with line-widths of $1{\mu}m$, $1{\mu}m$ and 250 nm, respectively. This simple approach suggests how to fabricate multiscale hybrid nanostructures composed of multiple materials. In addition, functional hybrid nanostructures can be expected to be applicable to various next-generation electronic devices, such as nonvolatile memories and energy harvesters.

Neural Hamming MAXNET Design for Binary Pattern Classification (2진 패턴분류를 위한 신경망 해밍 MAXNET설계)

  • 김대순;김환용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.100-107
    • /
    • 1994
  • This article describes the hardware design scheme of Hamming MAXNET algorithm which is appropriate for binary pattern classification with minimum HD measurement between stimulus vector and storage vector. Circuit integration is profitable to Hamming MAXNET because the structure of hamming network have a few connection nodes over the similar neuro-algorithms. Designed hardware is the two-layered structure composed of hamming network and MAXNET which enable the characteristics of low power consumption and fast operation with biline volgate sensing scheme. Proposed Hamming MAXNET hardware was designed as quantize-level converter for simulation, resulting in the expected binary pattern convergence property.

  • PDF

Numerical Simulation: Effects of Gas Flow and Heat Transfer on Polymer Deposition in a Plasma Dry Etcher

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.184-188
    • /
    • 2017
  • Polymer deposition pattern on the ceramic lid surface is analyzed by numerical modeling. Assumption was made that is affected by gas flow pattern from the horizontal and vertical nozzles, temperature profile from the finger-like branches made of graphite and electrostatic potential effect. Calculated results showed gas flow dynamics is less relevant than two others. Temperature and electrostatic effects are likely determining the polymer deposition pattern based on our numerical simulation results.

Automatic Machine Fault Diagnosis System using Discrete Wavelet Transform and Machine Learning

  • Lee, Kyeong-Min;Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1299-1311
    • /
    • 2017
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines using the sounds emitted by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We present here an automatic fault diagnosis system of hand drills using discrete wavelet transform (DWT) and pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The diagnosis system consists of three steps. Because of the presence of many noisy patterns in our signals, we first conduct a filtering analysis based on DWT. Second, the wavelet coefficients of the filtered signals are extracted as our features for the pattern recognition part. Third, PCA is performed over the wavelet coefficients in order to reduce the dimensionality of the feature vectors. Finally, the very first principal components are used as the inputs of an ANN based classifier to detect the wear on the drills. The results show that the proposed DWT-PCA-ANN method can be used for the sounds based automated diagnosis system.

Implementation of query model of CQRS pattern using weather data (기상 데이터를 활용한 CQRS 패턴의 조회 모델 구현)

  • Seo, Bomin;Jeon, Cheolho;Jeon, Hyeonsig;An, Seyun;Park, Hyun-ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.645-651
    • /
    • 2019
  • At a time when large amounts of data are being poured out, there are many changes in software architecture or data storage patterns because of the nature of the data being written, rather more read-intensive than writing. Accordingly, in this paper, the query model of Command Query Responsibility Segmentation (CQRS) pattern separating the responsibilities of commands and queries is used to implement an efficient high-capacity data lookup system in users' requirements. This paper uses the 2018 temperature, humidity and precipitation data of the Korea Meteorological Administration Open API to store about 2.3 billion data suitable for RDBMS (PostgreSQL) and NoSQL (MongoDB). It also compares and analyzes the performance of systems with CQRS pattern applied from the perspective of the web server (Web Server) implemented and systems without CQRS pattern, the storage structure performance of each database, and the performance corresponding to the data processing characteristics.