DOI QR코드

DOI QR Code

Fabrication of Micro-/Nano- Hybrid 3D Stacked Patterns

나노-마이크로 하이브리드 3차원 적층 패턴의 제조

  • Park, Tae Wan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jung, Hyunsung (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Bang, Jiwon (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Park, Woon Ik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
  • 박태완 (한국세라믹기술원 전자융합소재본부) ;
  • 정현성 (한국세라믹기술원 전자융합소재본부) ;
  • 방지원 (한국세라믹기술원 전자융합소재본부) ;
  • 박운익 (한국세라믹기술원 전자융합소재본부)
  • Received : 2018.11.06
  • Accepted : 2018.12.31
  • Published : 2018.12.31

Abstract

Nanopatterning is one of the essential nanotechnologies to fabricate electronic and energy nanodevices. Therefore, many research group members made a lot of efforts to develop simple and useful nanopatterning methods to obtain highly ordered nanostructures with functionality. In this study, in order to achieve pattern formation of three-dimensional (3D) hierarchical nanostructures, we introduce a simple and useful patterning method (nano-transfer printing (n-TP) process) consisting of various linewidths for diverse materials. Pt and $WO_3$ hybrid line structures were successfully stacked on a flexible polyimide substrate as a multi-layered hybrid 3D pattern of Pt/WO3/Pt with line-widths of $1{\mu}m$, $1{\mu}m$ and 250 nm, respectively. This simple approach suggests how to fabricate multiscale hybrid nanostructures composed of multiple materials. In addition, functional hybrid nanostructures can be expected to be applicable to various next-generation electronic devices, such as nonvolatile memories and energy harvesters.

Keywords

PMGHBJ_2018_v51n6_387_f0001.png 이미지

Fig. 1. Procedure for the formation of 3D hierarchical hybrid nanostructure by 2-step nano-transfer printing (n-TP). (Step 1) Formation of polymeric replica pattern. (Step 2) Repetitive pattern transfer process using a n-TP.

PMGHBJ_2018_v51n6_387_f0002.png 이미지

Fig. 2. Pattern formation of cross-bar hybrid structures by twice n-TP process. Transfer-printed Pt cross-bar array with a width of (a) 2 mm / 2 mm and (b) 1 mm / 250 nm. Well-ordered cross-bar pattern of (c) Pt 2 mm / WO3 2 mm and (d) Pt 1 m / WO3 250 nm line width.

PMGHBJ_2018_v51n6_387_f0003.png 이미지

Fig. 3. Highly ordered 3D hybrid pattern on a flexible PI film. (a) Schematic illustration of multi-stacked Pt triangle pattern. Photo images of triple-stacked (b) Pt triangle pattern and (e) Pt/WO3 hybrid nanostructure. (c) SEM image of Pt triangle pattern (line width: 1 mm-2 mm-250 nm). (d) Procedure for formation of Pt/WO3 hybrid nanostructure using a n-TP process. (f) Structural SEM analysis of Pt-WO3-Pt pattern with a width of 1 mm-1 mm-250 nm.

PMGHBJ_2018_v51n6_387_f0004.png 이미지

Fig. 4. Distribution of line-width for Pt-WO3-Pt hybrid nanostructure on PI.

References

  1. C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A. C. Hlnckley, I. Pochorovski, X. Yan, J. W.-F. To, J. Y. Oh, J. B.-H. Tok, Z. Bao and B. Murmann, Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors, Nat. Electron., 1 (2018) 183-190. https://doi.org/10.1038/s41928-018-0041-0
  2. H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho and K. T. Nam, Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles, Nature, 556 (2018) 360-365. https://doi.org/10.1038/s41586-018-0034-1
  3. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Graphene and Graphene Oxide?: Synthesis , Properties , and Applications, Adv. Mater., 22 (2010) 3906-3924. https://doi.org/10.1002/adma.201001068
  4. W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim and S.-W. Kim, Nanopatterned textile-based wearable triboelectric nanogenerator, ACS Nano, 4 (2015) 3501-3509.
  5. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. L.-Najafabadi, D. N. Futaba and K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection, Nat. Nanotechnol., 6 (2011) 296-301. https://doi.org/10.1038/nnano.2011.36
  6. Z. L. Wang and W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems, Angew. Chem. Int. Ed., 51 (2012) 11700-11721. https://doi.org/10.1002/anie.201201656
  7. Q. H. Wang, K. K.-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, (2012) 699-712. https://doi.org/10.1038/nnano.2012.193
  8. J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, L. Ferain, P. Razavi, B. O'Neil, A. Blake, M. White, A.-M. Kelleher, B. McCarthy and R. Murphy, Nanowire transistors without junctions, Nat. Nanotechnol., 5, (2010) 225-229. https://doi.org/10.1038/nnano.2010.15
  9. X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles and J. L. Goldman, High-performance thin-film transistors using semiconductor nanowires and nanoribbons, Nature, 425 (2003) 274-278. https://doi.org/10.1038/nature01996
  10. J. A. Defranco, B. S. Schmidt, M. Lipson and G. G. Malliaras, Photolithographic patterning of organic electronic materials, Organic Electronics, 7 (2006) 22-28. https://doi.org/10.1016/j.orgel.2005.10.002
  11. Z. Nie and E. Kumacheva, Patterning surfaces with functional polymers, Nat. Mater., 7 (2008) 277-290. https://doi.org/10.1038/nmat2109
  12. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Nanoimprint lithography. J. Vac. Sci. Technol. B, 14 (1996) 4129-4133. https://doi.org/10.1116/1.588605
  13. I. Maximov, E.-L. Sarwe, M. Beck, K. Deppert, M. Graczyk, M. H. Magnusson and L. Montelius, Fabrication of Si-based nanoimprint stamps with sub-20 nm features, Microelectron. Eng., 61-62 (2002) 449-454.
  14. M. P. Stoykovich, H. Kang, K. Ch. Daoulas, G. Liu, C.-C. Liu, J. J. de Pablo, M. Muller and P. F. Nealey, Directed self-assembly of block copolyners for nanolithography: fabrication of isolated features and essential integrated circuit geometries, ACS Nano, 1 (2007) 168-175. https://doi.org/10.1021/nn700164p
  15. D. O. Shin, J. H. Mun, G.-T. Hwang, J. M. Yoon, J. Y. Kim, J. M. Yoon, Y.-B. Yang, Y. Oh, J. Y. Lee, J. Shin, K. J. Lee, S. Park, J. U. Kim and S. O. Kim, Multicomponent nanopatterns by directed block copolymer self-assembly, ACS Nano, 7 (2013) 8899-8907. https://doi.org/10.1021/nn403379k
  16. J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. Yim, H.-I. Jang, J. H. Park, S. Y. Lee, C.-O. Park and Y. S. Jung, High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching, Nat. Commun., 5 (2014) 1-12.