• Title/Summary/Keyword: Control packet

Search Result 1,137, Processing Time 0.029 seconds

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.

A New Packet Forwarding Architecture For Fairness Improvement in Wireless Sensor Network (무선 센서 네트워크 환경에서 공정성 향상을 위한 새로운 패킷 전송 구조)

  • Song, Byung-Hun;Lee, Hyung-Su;Ham, Kyung-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.215-217
    • /
    • 2004
  • In wireless sensor networks, fair allocation of bandwidth among different nodes is one of the critical problems that effects the serviceability of the entire system. Fair bandwidth allocation mechanisms, like fair queuing, usually need to maintain state, manage buffers, and perform packet scheduling on a per flow basis, and this complexity may prevent them from being cost-effectively implemented and widely deployed. It is a very important and difficult technical issue to provide packet scheduling architecture for fairness in wireless sensor networks. In this paper, we propose an packet scheduling architecture for sensor node, called FISN (Fairness Improvement Sensor Network), that significantly reduces this implementation complexity yet still achieves approximately fair bandwidth allocations. Sensor node for sensing estimate the incoming rate of each sensor device and insert a label into each transmission packet header based on this estimate. Sensor node for forwarding maintain no per flow state; they use FIFO packet scheduling augmented by a probabilistic dropping algorithm that uses the packet labels and an estimate of the aggregate traffic at the gathering node. We present the detailed design, implementation, and evaluation of FISN using simulation. We discuss the fairness improvement and practical engineering challenges of implementing FISN in an experimental sensor network test bed based on ns-2.

  • PDF

A Video Pictures-based Error Control Method for Improving Resources Efficiency over Wireless Networks (무선 네트워크 자원 효율 향상을 위한 비디오 픽처 기반 오류 제어 기법)

  • Sohn, Yejin;Lee, Woong-Jae;Paik, Jong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • Due to the development of the communication technology and the high-performance mobile device, the number of video streaming service user has been increasing. Video streaming services in the restricted network environments need error control to support users for the Ultra High Definition(UHD) video delivery. Packet-level FEC method was used to control the error for delay-sensitive video service, but it has a defect in huge occupation of network resources by redundant packets. In this paper, we proposed a packet-level FEC algorithm which maintains the video quality by previous FEC methods and also reduces the occupation of network resource in the restricted network environments. The proposed algorithm controls the redundant rate with using the delivery characteristic of the video coding technology, and improves the efficiency of network resources by reducing the traffic by around 33% in comparison with the previous FEC methods.

A Packet Forwarding Control Scheme for TCP Performance Improvement in Mobile Networks (모바일 네트워크에서 TCP 성능 향상을 위한 패킷 포워딩 제어 방안)

  • Hur, Kyeong;Eom, Doo-Seop;Lee, Seung-Hyun;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.353-364
    • /
    • 2002
  • To prevent the performance degradation of TCP due to packet loss in the smooth handoff by the route optimization extension of Mobile If protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers the packets dropped during the handoff by forwarding the buffered packets at the old base station to the mobile user. But, when the mobile user moves to a new foreign network which is connected to a congested router, the buffered packets forwarded by the old base station are dropped and the link utilization performance degraded due to increased congestion by the forwarded packets. In this paper, when the mobile user moves to a new foreign network which is connected to a congested router, Ive propose a packet forwarding control scheme required far the old base station to improve TCP performance in mobile networks. The old base station forwards or discards the buffered packets during handoff by proposed packet forwarding control scheme based on congestion states of RED(Random Early Detection) at the congested router. Simulation results slow that link utilization performance can be improved by applying proposed packet forwarding control scheme.

TCP Performance Control Method for the Wireless Link by using Extended ECN Mechanism (확장된 ECN 메커니즘을 사용한 무선 링크에서의 TCP성능 제어 기법)

  • Yun, You-Hun;Kim, Tai-Yun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.336-343
    • /
    • 2002
  • Nowadays, after appearance of wireless network the existent internet environment is changing into the united wire/wireless network. But the present TCP regards all of the packet losses on transmission as the packet tosses due to the congestion. When it is applied on the wireless path, it deteriorates the end-to-end TCP throughput because it regards the packet loss by handoff or bit error as the packet loss by the congestion and it reduces the congestion window. In this paper, for solving these problems we propose the method that controls the performance of TCP on the wireless link by extending ECN which is used as a congestion control mechanism on the existent wire link. This is the method that distinguished the packet loss due to the congestion from due to bit error or handoff on the wireless network, so it calls the congestion control mechanism only when there occurs the congestion in the united wire/wireless network.

Protocol supporting Variable-length Message using Reservation Slots in WDM Local Network (WDM Local Network에서 예약슬롯을 이용한 가변길이 메시지 지원 프로토콜)

  • 진교홍
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.257-262
    • /
    • 2001
  • A new WDM-based protocol for scheduling a variable-length message is proposed in this paper Two control channels, reservation slot and control slot, are used to coordinate transmission and diminish the collisions of packet to minimize the across delay. When an idle control slot is available, control packet is transmitted on that slot and message is transferred. And the node continues to transmit its control packet through the corresponding slot every cycle, until the message is completely transmitted. If any control slot is not available, the node schedules the transmission time of message in earliest available time using reservation slots. The proposed scheduling algorithm shows better performance and lower access delay.

  • PDF

Comparison and Analysis of Cycling Packet Drop Algorithms and RIO as Packet Drop for the Congestion Control (혼잡제어용 패킷 폐기를 위한 사이클링 패킷 폐기 기법과 RIO 알고리즘의 비교 분석)

  • Kim, Su-Yeon;Gang, Hyeon-Guk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.59-68
    • /
    • 2002
  • In this paper, we compared and analyzed two new models of cyclic packet dropping algorithm, Adaptive Cyclic Packet Dropping algorithm (ACPD), and Non-adaptive Cyclic Packet Dropping algorithm (NCPD) with RIO. The ACPD algorithm drops adaptively packets for the congestion control, as predicting traffic pattern between each cycle. Therefore the ACPD algorithm makes up for the drawback of RIO algorithm and minimizes the wastes of the bandwidth being capable of predicting in the NCPD algorithm. We modelled two cyclic packet drop algorithms and executed a simulation and analyzed the throughput and packet drop rate based on Sending Priority changing dynamically depending on network traffic. In this algorithm, applying the strict drop precedence policy, we get better performance on priority levels. The results show that two new algorithms may provide more efficient and stricter drop precedence policy as compared to RIO independent of traffic load. The ACPD algorithm can provide better performance on priority levels and keep stricter drop policy than other algorithms.

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

ACCB- Adaptive Congestion Control with backoff Algorithm for CoAP

  • Deshmukh, Sneha;Raisinghani, Vijay T.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.191-200
    • /
    • 2022
  • Constrained Application Protocol (CoAP) is a standardized protocol by the Internet Engineering Task Force (IETF) for the Internet of things (IoT). IoT devices have limited computation power, memory, and connectivity capabilities. One of the significant problems in IoT networks is congestion control. The CoAP standard has an exponential backoff congestion control mechanism, which may not be adequate for all IoT applications. Each IoT application would have different characteristics, requiring a novel algorithm to handle congestion in the IoT network. Unnecessary retransmissions, and packet collisions, caused due to lossy links and higher packet error rates, lead to congestion in the IoT network. This paper presents an adaptive congestion control protocol for CoAP, Adaptive Congestion Control with a Backoff algorithm (ACCB). AACB is an extension to our earlier protocol AdCoCoA. The proposed algorithm estimates RTT, RTTVAR, and RTO using dynamic factors instead of fixed values. Also, the backoff mechanism has dynamic factors to estimate the RTO value on retransmissions. This dynamic adaptation helps to improve CoAP performance and reduce retransmissions. The results show ACCB has significantly higher goodput (49.5%, 436.5%, 312.7%), packet delivery ratio (10.1%, 56%, 23.3%), and transmission rate (37.7%, 265%, 175.3%); compare to CoAP, CoCoA+ and AdCoCoA respectively in linear scenario. The results show ACCB has significantly higher goodput (60.5%, 482%,202.1%), packet delivery ratio (7.6%, 60.6%, 26%), and transmission rate (40.9%, 284%, 146.45%); compare to CoAP, CoCoA+ and AdCoCoA respectively in random walk scenario. ACCB has similar retransmission index compare to CoAp, CoCoA+ and AdCoCoA respectively in both the scenarios.

모바일 오피스 서비스 지원을 위한 ADSRC 패킷 통신 시스템

  • Lee, Hyun;An, Dong-Hyun;Shin, Chang-Sub;Im, Chun-Sik;Park, Se-Ho;Cho, Kyung-Rok
    • Information and Communications Magazine
    • /
    • v.19 no.9
    • /
    • pp.77-85
    • /
    • 2002
  • In this paper, we introduce an ADSRC(hdvanced DSRC) OFDM packet communication system which has been developed by ETRI. The ADSRC system is targeted to provide high terminal mobility, high data rate and seamless service in roadside environment for mobile office services. We discuss the requirements of the ADSRC communication system for mobile office services, and the system design specification to meet them with regard to air interface. The ADSRC packet communication systems consist of the MAC processor block, the OFDM packet modem block and the RF block. The MAC processor block handles medium access control and the test. The OFDM packet modem transmits data packets at up to 24Mbps adaptively and recovers the data from RF block. We describe the ADSRC packet communication system architecture and the ADSRC system protocol.