• Title/Summary/Keyword: Control drone

Search Result 304, Processing Time 0.024 seconds

A Study on Ground Control System Design by User Classification to Increase Drone Platform Usability (드론 플랫폼 활용성 증대를 위한 사용자 맞춤형 지상 제어 시스템 설계 연구)

  • Ukjae Ryu;Yanghoon Kim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.56-61
    • /
    • 2022
  • Various convergence technologies discovered through the 4th industrial revolution are permeating the industry. Drones are being used in industries such as construction, transportation, and national defense based on convergence technology. Quart-copter drone control is being used in a wide range of fields from the visual field of operation with the naked eye to the remote field of view using GCS. If we classify those who operate industrial drones, there are general pilots who directly use drones, instructors who train drone pilots, and mechanics who check the status of drones and use them for a long time. Depending on the shape of the screen of the drone GCS, a user's quick response or key data can be acquired. Accordingly, in this study, GUI characteristics were analyzed for the mission planner GCS and a screen composition method according to the user was proposed.

Automation of Roadway Lighting Illuminance Measurement

  • BAO, Jieyi;HU, Xiaoqiang;JIANG, Yi;LI, Shuo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.705-711
    • /
    • 2022
  • Roadway lighting is an integral element of a highway system. Luminaires on roadways provide viewing conditions for drivers and pedestrians during nighttime in order to improve safety. It is time-consuming and labor-intensive to manually measure roadway illuminance at predetermined spots with a handheld illuminance meter. To improve the efficiency of illuminance measurement, a remote-control electrical cart and a drone were utilized to carry an illuminance meter for the measurements. The measurements were performed on the marked grid points along the pavement. To measure the illuminance manually, one person measures illuminance at each grid point with the handheld meter and another person records the illuminance value. To measure the illuminance with the remote-control cart, the illuminance meter is attached to the cart and it measures illuminance values continuously as the cart moves along the grid lines. With the drone, the meter records the illuminance continuously as the drone carries the meter and flies along the grid line. Because the drone can fly at different heights, the measurements can be done at different altitudes. The illuminance measurements using the cart and the drone are described in detail and compared with manual measurements in this paper. It is shown through this study that automated measurements can greatly improve the efficiency of roadway illuminance data measurements.

  • PDF

Real-time Tele-operated Drone System with LTE Communication (LTE 통신을 이용한 실시간 원격주행 드론 시스템)

  • Kang, Byoung Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.35-40
    • /
    • 2019
  • In this research, we suggest a real-time tele-driving system for unmanned drone operations using the LTE communication system. The drone operator is located 180km away and controls the altitude and position of the drone with a 50ms time delay. The motion data and video from the drone is streamed to the operator. The video is played on the operator's head-mounted display (HMD) and the motion data emulates the drone on the simulator for the operator. In general, a drone is operated using RF signal and the maximum distance for direct control is limited to 2km. For long range drone control over 2km, an auto flying mode is enabled using a mission plan along with GPS data. In an emergency situation, the autopilot is stopped and the "return home" function is executed. In this research, the immersion tele-driving system is suggested for drone operation with a 50ms time delay using LTE communication. A successful test run of the suggested tele-driving system has already been performed between an operator in Daejeon and a drone in Inje (Gangwon-Do) which is approximately 180km apart.

무인항공기의 각속도 기반 자동비행제어시스템 개발

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Gi;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.7-14
    • /
    • 2005
  • This paper describes development of automatic flight control system for an unmanned target drone. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed. The performance of automatic flight control system is verified by flight test.

  • PDF

Drone-based smart quarantine performance research (드론 기반 스마트 방재 방안 연구)

  • Yoo, Soonduck
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.437-447
    • /
    • 2020
  • The purpose of this study is to research the countermeasures and expected effects through the use of drones in the field of disaster prevention as a drone-based smart quarantine performance method. The environmental, market, and technological approaches to the review of the current quarantine performance task and its countermeasures are as follows. First, in terms of the environment, the effectiveness of the quarantine performance business using drone-based control is to broaden the utilization of forest, bird flu, livestock, facility areas, mosquito larvae, pests, and to simplify and provide various effective prevention systems such as AI and cholera. Second, in terms of market, the standardization of livestock and livestock quarantine laws and regulations according to the use of disinfection and quarantine missions using domestic standardized drones through the introduction of new technologies in the quarantine method, shared growth of related industries and discovery of new markets, and animal disease prevention It brings about the effect of annual budget savings. Third, the technical aspects are (1) on-site application of disinfection and prevention using multi-drone, a new form of animal disease prevention, (2) innovation in the drone industry software field, and (3) diversification of the industry with an integrated drone control / control system applicable to various markets. (4) Big data drone moving path 3D spatial information analysis precise drone traffic information ensures high flight safety, (5) Multiple drones can simultaneously auto-operate and fly, enabling low-cost, high-efficiency system deployment, (6) High precision that this was considered due to the increase in drone users by sector due to the necessity of airplane technology. This study was prepared based on literature surveys and expert opinions, and the future research field needs to prove its effectiveness based on empirical data on drone-based services. The expected effect of this study is to contribute to the active use of drones for disaster prevention work and to establish policies related to them.

Simulation of The Effective Distribution of Droplets and Numerical Analysis of The Control Drone-Only Nozzle (방제드론 전용노즐의 유효살포폭 내 액적분포 및 수치해석 시뮬레이션)

  • Jinteak Lim;Sunggoo Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.531-536
    • /
    • 2024
  • Control drones, which are recently classified as smart agricultural machines in the agricultural field, are striving to build smart control and automatic control systems by combining hardware and software in order to shorten working hours and increase the effectiveness of control in the aging era of rural areas. In this paper, the characteristics of the nozzle dedicated to the control drone were analyzed as a basic study for the establishment of management control and automatic control systems. In order to consider various variables such as the type of various drone models, controller, wind, flight speed, flight altitude, weather conditions, and UAV pesticide types, related studies are needed to be able to present the drug spraying criteria in consideration of the characteristics and versatility of the nozzle. Therefore, to enable the consideration of various variables, flow analysis (CFD) simulation was conducted based on the self-designed nozzle, and the theoretical and experimental values of the droplet distribution were compared and analyzed through water reduction experiments. In the future, we intend to calculate accurate scattering in consideration of various variables according to drone operation and use it in management control and automatic control systems.

Design of Navigation System for Low Cost Unmanned Aerial Vehicle (저가형 무인항공기 운용을 위한 항법시스템 설계)

  • Lee, Jang-Ho;Kim, Sung-Pil;Park, Mu-Hyeok;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • This paper describes the design of navigation system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of navigation for low cost unmanned aerial vehicle, unmanned target drone as our test bed in this paper is verified by both Hardware in the loop simulation(HILS) to test performance of GPS as GPS output frequency high and results of flight test.

  • PDF

Conceptual Design of Ground Control Point Survey Automation Technology Using Drone (드론을 활용한 지상기준점 측량 자동화 기술의 개념디자인)

  • Jae-Woo Park;Dong-Jun Yeom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.687-696
    • /
    • 2023
  • In recent construction sites, digital maps obtained through drone photogrammetry have garnered increasing attention as indispensable tools for effective construction site management. the strategic placement of Ground Control Points (GCPs) is crucial in drone photogrammetry. Nevertheless, the manual labor and time-intensive nature of GCP surveying pose significant challenges. The purpose of this study is to design the concept of automated GCPs survey technology for enhancing drone photogrammetry efficiency in construction sites. As a result, the productivity of the automated method was analyzed as 118,894.7㎡/hr. It is over 25% productivity improvement compared to traditional methods. In future studies, economic analysis of automated methods should be studied.

A study on Improving the Performance of Anti - Drone Systems using AI (인공지능(AI)을 활용한 드론방어체계 성능향상 방안에 관한 연구)

  • Hae Chul Ma;Jong Chan Moon;Jae Yong Park;Su Han Lee;Hyuk Jin Kwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Drones are emerging as a new security threat, and the world is working to reduce them. Detection and identification are the most difficult and important parts of the anti-drone systems. Existing detection and identification methods each have their strengths and weaknesses, so complementary operations are required. Detection and identification performance in anti-drone systems can be improved through the use of artificial intelligence. This is because artificial intelligence can quickly analyze differences smaller than humans. There are three ways to utilize artificial intelligence. Through reinforcement learning-based physical control, noise and blur generated when the optical camera tracks the drone may be reduced, and tracking stability may be improved. The latest NeRF algorithm can be used to solve the problem of lack of enemy drone data. It is necessary to build a data network to utilize artificial intelligence. Through this, data can be efficiently collected and managed. In addition, model performance can be improved by regularly generating artificial intelligence learning data.

A Study of Method and Algorithm for Stable Flight of Drone (드론의 안정화 비행을 위한 방법 및 알고리즘에 관한 연구)

  • Cha, Gyeong Hyeon;Sim, Isaac;Hong, Seung Gwan;Jung, Jun Hee;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • Unmaned Aerial Vehical(UAV) is a flight which is automatically flying by remote control on th ground. However UAV has an advantage of control that is easy, but has an disadvantage of not hovering. By comparison, quadcopter which is one of the UAV is easily operated. Also quadcopter has hovering function and high stability. In this paper, we propose stable flight algorithm associated PID(proportional-integral-derivative) control with fuzzy contorl to implement stable quadcopter system. After getting a positioning information of the drone, This proposed system is implemented for stable flight through flight attitude control using gyro and acceleration sensor. We also propose the flight mode system to hover drone with GPS sensor.