• Title/Summary/Keyword: Control compensator

Search Result 798, Processing Time 0.023 seconds

The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator (직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

Development of Process Model for Turbine Control Valve Test in a Power Plant (발전소 터빈제어 밸브시험 계통 모델 개발)

  • Woo, Joo-Hee;Choi, In-Kyu;Park, Doo-Yong;Kim, Jong-An
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.830-837
    • /
    • 2011
  • A turbine control system which has been operated for years in a nuclear power plant was retrofitted with a newly developed digital control system. After completion of the retrofit, turbine valve tests were performed to ensure the integrity of each valve's control function. The sequence of each valve test is composed of a closing process and a reopening process. To minimize megawatt variation which normally occurs during the test sequence, we employed a kind of compensator algorithm in the new digital control system which also have been used in the old system. There were difficulties finding optimal parameter settings for our new compensator algorithm because the power plant didn't allow us to perform necessary tuning procedures while the turbine is on load operation. Therefore an alternative measure for the compensator tuning which is independent of the turbine actual operation had to be implemented. So, a process model for the test was required to overcome this situation. We analyzed the operation data of the test and implemented the process model by use of input and output variable relations. Also we verified the process model by use of another condition's operating data. The result shows that the output of model is similar to the actual operation data.

Comparative study of control strategies for the induction generators in wind energy conversion system

  • Giribabu, D.;Das, Maloy;Kumar, Amit
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.635-662
    • /
    • 2016
  • This paper deals with the comparison of different control strategies for the Induction generators in wind energy conversion system. Mainly, two types of induction machines, Self excited induction generator (SEIG) and doubly Fed Induction generators (DFIG) are studied. The different control strategies for SEIG and DFIG are compared. For SEIG, Electronic load Controller mechanism, Static Compensator based voltage regulator are studied. For DFIG the main control strategy namely vector control, direct torque control and direct power control are implemented. Apart from these control strategies for both SEIG and DFIG to improve the performance, the ANFIS based controller is introduced in both STATCOM and DTC methods. These control methods are simulated using MATLAB/SIMULINK and performances are analyzed and compared.

Design of Time Delay Compensator of Three-Level Inverter for Three-Phase UPS Systems (3상 UPS용 3레벨 인버터의 시지연 보상기 설계)

  • Lee, Jin-Woo;Lim, Seung-Beom;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.63-64
    • /
    • 2011
  • The inevitable calculation time delay of digital controller especially degrades the voltage control performance of three-phase UPS systems. This paper proposes time delay compensators based on the Smith-predictor for both voltage and current controllers of three-level NPC inverters. The PSIM-based simulation results show that the proposed controller with delay compensator gives improved voltage control performance with respect to time delay.

  • PDF

Current Control Method of Distribution Static Compensator Considering Non-Linear Loads (비선형 부하를 고려한 배전용 정지형 보상기의 전류제어 기법)

  • Kim, Dong-Geun;Choi, Jong-Woo;Kim, Heung-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1342-1348
    • /
    • 2009
  • DSTATCOM(distribution static compensator) is one of the custom power devices, and protects a distribution line from unbalanced and harmonic current caused by non-linear and unbalanced loads. Researches about DSTATCOM are mainly divided two parts, one is the calculation of compensated current and the other part is the current control. This paper proposes a proportional-resonant-repetitive current controller. Improved performance of instantaneous power compensation has been shown by simulations and experiments.

Extension of the dynamic anti-reset windup method (다이나믹 리셋 와인드엎 방지방법의 확장)

  • 박종구;최종호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.73-76
    • /
    • 1996
  • This paper presents a dynamical anti-reset windup (ARW) compensation method for saturating control systems with multiple controllers and/or multiloop configuration. By regarding the difference of the controller states in the absence and presence of saturating actuators as an objective function, the dynamical compensator which minimize the objective function are derived in an integrated fashion. The proposed dynamical compensator is a closed form of the plant and controller parameters. The proposed method guarantees total stability of resulting system. An illustrative example is given to show the effectiveness of the proposed method.

  • PDF

Robust compensator design for parametric uncertain systems by separated optimizations (분리최적화 기법을 이용한 강인제어기 설계)

  • 김경수;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.589-592
    • /
    • 1996
  • It is well known that robust compensators designed by the block-diagonal Lyapunov function approaches are conservative while they are popular in practice because of their computational easiness. In this note, we develop a systematized version of conventional block-diagonal Lyapunov function approaches by deriving two separated optimizations based on the guaranteed cost control method. The proposed method generates reasonable robust compensators in practice.

  • PDF

Distributed static series compensator based flexible AC transmission system (송전 전력 제어를 위한 분산 정지형 직렬 보상기에 관한 연구)

  • Yoon, Hanjong;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.29-30
    • /
    • 2016
  • This paper describes a distributed static series compensator (DSSC) which is a type of distributed flexible ac transmission system (DFACTS). The control principles including the power flow control and the current regulation are explained in detail. In order to verify the effectiveness of the DSSC, the simulation results are offered.

  • PDF

An Anti-Windup Compensation for Systems with Saturation Actuators (포화 요소가 있는 계를 위한 와인드업 방지 보상 방법)

  • 장원욱;박영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1332-1340
    • /
    • 1992
  • A novel approach based on a nonlinear compensator is prposed to prevent 'windup', which is caused by the saturation of the acutator and the integral action of the controller. The anti-windup compensator is located between the conventional linear controller, designed neglecting the saturation, and the actuator. It was proven based on the describing function method that, if the closed loop control systems are stable assuming no saturation, then there may exist a range of compensator gain which prevents any limit-cycle. The computer simulation results show that the compensator proposed in the manuscript can eliminate the limit cycle and improve the transient response.

Flight control of a small unmanned aerial vehicle using a dynamic compensator (동적 보상기를 이용한 소형 무인항공기 비행 제어)

  • Kim, Heui-Joo;Kim, Jea-Wook;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.571-577
    • /
    • 2012
  • In this paper, we design a flight controller using a dynamic compensator for a small unmanned aerial vehicle. The proposed method ensures flight stability during altitude holding and waypoints passing by improving the transient response and steady state error. The control system consists of dual feedback loops with an inner loop and a outer loop. The inner loop has a PD controller to improves the transient response and the outer loop has a dynamic compensator to reduce overshoot in the transient response and improve the steady state error. The performance of the proposed method is evaluated by flight test on a small UAV.