• Title/Summary/Keyword: Control arm

Search Result 1,235, Processing Time 0.028 seconds

The Effect of Postural Correction and Visual Feedback on Muscle Activity and Head Position Change During Overhead Arm Lift Test in Subjects with Forward Head Posture

  • Xu, Liwen;Hwang, Byoungha;Kim, Teaho
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.3
    • /
    • pp.151-156
    • /
    • 2019
  • Purpose: This study aimed to investigate the immediate effects of posture correction and real-time visual feedback using a video display on muscle activity and change of head position during overhead arm lift test in individuals with forward head posture. Methods: Fifteen subjects with forward head posture and fifteen normal subjects who volunteered were included in this study. During both groups performed the overhead arm lift test, the muscle activity of the upper trapezius, serratus anterior, sternocleidomastoid, and lower trapezius muscle were measured using electromyography, and head position change was measured using photographs. Then, forward head posture group was asked to perform overhead arm lift test again after posture correction and real-time visual feedback using a video display respectively. One-way analysis of variance (ANOVA) was used to analyze four conditions: pre-test, posture correction, real-time visual feedback, and the control group. Results: The upper trapezius and lower trapezius muscle activity significantly decreased posture correction, real-time visual feedback, and control group than pre-test of forward head posture group (p<0.05). The sternocleidomastoid muscle significantly decreased real-time visual feedback and control group than pre-test of forward head posture group. Head position change significantly decreased three conditions than pre-test of forward head posture group and real-time visual feedback and control group significantly decreased than posture correction. Conclusion: This study recommend for maintaining cervical stability during the overhead arm lift test, postural control using real-time visual feedback is more effective in subjects with forward head posture.

Circulating Current Control in MMC-HVDC Considering Switching Device Current Capacity under Unbalanced Voltage Conditions (전압 불평형 조건에서 스위칭 소자의 전류용량을 고려한 MMC-HVDC 순환전류 제어기법)

  • Kim, Chun-Sung;Jung, Seung-Hwan;Hwang, Jung-Goo;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.55-65
    • /
    • 2016
  • This paper proposed a new control method which is capable of controlling circulating current considering current capacity of switching device. In the unbalanced voltage conditions, active power and reactive power have double line frequency. Thus, in order to provide active power without ripple, it is necessary to inject the negative sequence current components. However, when the negative current components is injected, it increases the total current flowing in the Arm, and in the Sub-module(SM) the current more than rated is impressed, which leads to destroy the system. Also, in impressing the circulating current reference of each arm, conventional control method impressed applicable $i_{dck}/3$ in the case of balanced voltage conditions. In the case of unbalanced conditions, as arm circulating current of three phase show difference due to the power impressed to each arm, reference of each arm is not identical. In this study, in the case of unbalanced voltage, within permitted current, the control method to decrease the ripple of active power is proposed, through circulating current control and current limitations. This control method has the advantage that calculates the maximum active power possible to generate capacity and impressed the current reference for that much. Also, in impressing circulating current reference, a new control method proposes to impress the reference from calculating active power of each phase. The proposed control method is verified through the simulation results, using the PSCAD/EMTDC.

Variable structrure system control method for the trajectory control of robot arm (로보트 팔의 궤도제어를 위한 가변구조제어방식)

  • 김주홍;송동설;엄기환;최우승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.12-17
    • /
    • 1991
  • In this paper, a variable structure system control method is proposed to the trajectory control of robot arm. A proposed method uses nonlinear switching function and saturation function. Furthermore, learning control method uses to decrease of the following error. The computer simulation results show that the chattering and the following error decrease and is improved the control the performance by a proposed method.

  • PDF

A controller design for direct drive arm robot using 32-Bit (MC 68020) CPU (32비트(MC 68020) CPU를 사용한 직접구동방식 로보트의 제어기 설계)

  • 이주장;윤형우;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.82-85
    • /
    • 1988
  • This paper are the manufacture of controller of direct drive arm robot using 32 bit CPU(MC 69020). The work would draw on KIT of Robotics Laboratory whose extensive experience in 16 bit CPU Controller(MC 68008) in addition to the WHILE languages. We found that this controller is good for the direct drive arm robot controller for the use of self-tuning algorithms and real time control.

  • PDF

Fuzzy control for a flexible arm manipulator

  • Fortuna, L.;LoPresti, M.;Vinci, C.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1037-1040
    • /
    • 1993
  • In this paper a fuzzy controller for a flexible arm with one degree of freedom is presented. Goal of the control is to drive the manipulator to the position $\theta$0 avoiding the oscillations due the elasticity of the arm. The performances of the fuzzy controller are evaluated through a series of simulations that shows appreciable results both for the transient and the steady behaviour.

  • PDF

Inverse Dynamic Torque Control of a Six-Jointed Robot Arm Using Neural networks (신경회로를 이용한 6축 로보트의 역동력학적 토크제어)

  • 오세영;조문정;문영주
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.816-824
    • /
    • 1991
  • It is well known that dynamic control is needed for fast and accurate control. Neural networks are ideal for representing the strongly nonlinear relationship in the dynamic equations including complex unmodeled effects. It thus creates many advantages over conventional methods such as simple, fast and accurate control through neural network's inherent learning and massive parallelism. In this paper, dynamic control of the full six degrees of freedom of an industrial robot arm will be presented using neural networks. Moreover, through application to a real robot the usefulness of neurocontrol is demonstrated. The back propagation and feedback-error learning is used to train the neurocontroller. Simulated control of a PUMA 560 arm demonstrates that it moves at high speed with good accuracy and generalizes over untrained trajectories as well as adapt to unforseen load changes and sensor noise.

Trajectory control of a flexible robot arm using inverse dynamics

  • Sasaki, Minoru;Yamagata, Eiji;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.987-992
    • /
    • 1988
  • In recent years there has been much interest in using light-weight, higher performance arms for both commercial and space-based applications, leading to the research of flexible robot manipulator. This paper is concerned with the trajectory control of a flexible arm using inverse dynamics. Inverse problems are important to robot control and programming, since they allow one to find the appropriate inputs necessary for producing the desired outputs. The input is obtained by the numerical inversion of Laplace transformation in the time domain. And we attempt the trajectory control experiment of a flexible arm using this calculated input. In this article we compare the numerical results with experimental results and can find good agreement. The results make clear that this technique has the good potential for the control of tip trajectory of flexible robot arms.

  • PDF

POSITION CONTROL OF A FLEXIBLE ROBOT ARM UNDER IMPULSIVE LOADING THE TIP

  • Chonan, Seiji;Yuki, Yasuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.896-901
    • /
    • 1990
  • A simulation analysis is presented for the position control of a single-link flexible manipulator whose end-effector is subjected to an impulsive force. Arm is rotated by a d.c. servomotor at the shoulder so that the end point stays precisely at its initial position even if the end effector is thumped with the impulsive loading. A gap sensor is used to measure the tip displacement. The control torque based on the PD control law is applied to the motor through the driver circuit. The control strategy is tested by means of computer simulation for the one-link flexible-arm prototype in the authers' laboratory at Tohoku Univ.

  • PDF

Gear Train Development for CNC Wire Bending Machine (CNC 와이어 벤딩기 구동장치 개발)

  • Cho, Hyun-Deog;Choi, Sung-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.50-55
    • /
    • 2008
  • CNC wire bending machines are used in industries to make a type variety of wire products such as long links. The machines have a long arm device to rotate in order to remove forming errors by flexibility of wire. Generally, the machines which constructed servo motors in the arm have the rotating range of the arm under 360 degree because the servo motors connect with fixed control devices on frame by many cables. The rotating angle under 360 degree limits working speed and forming geometry. Therefore this study developed a gear train to drive a parts in arm and to be independent on arm rotation movement. The developed gear train can transfer four movements to four components in arm and is consists parallel of four pairs of satellite gear trains. This study constructed the CNC wire bending machine with the developed gear train and verified that the gear train could drive internal components independently on arm rotation.

  • PDF

A Study on Robotic Arm Control Method Based on Upper Extremity Electromyogram (상지 근전도 기반의 로봇 팔 제어방법에 대한 연구)

  • Kang, S.Y.;Eom, S.H.;Jang, M.S.;Lee, E.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2015
  • In this paper, we propose the robotic arm control method based on upper extremity electromyogram for lower upper extremity amputation patient. The muscle activity of the forearm flexor, forearm extensor and biceps was analyzed to utilize distribution of muscle activity to a specific position in order to the control input. This control input is converted into a control command for controlling the robotic arm through the algorithm. For the experiment and verify the proposed method, 5DoF robotic arm control system was constructed with 1 channel EMG Module and PC applications through the interworking with each module to perform a three-channel EMG analysis. For accuracy and performance evaluation of control, Experiments were performed with robotic arms moving objects. As a result of experiments which after training for 10 hours by middle 20's man, Validity of the proposed method was evaluated based an average accuracy of 92.5%.

  • PDF