• Title/Summary/Keyword: Control Variates Method

Search Result 9, Processing Time 0.021 seconds

Simulation Efficiency for Estimation of System Parameters in Computer Simulation (컴퓨터 시뮬레이션을 통한 시스템 파라미터 추정의 효율성)

  • Kwon, Chi-Myung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.1
    • /
    • pp.61-71
    • /
    • 1993
  • We focus on a way of combining the Monte Calro methods of antithetic variates and control variates to reduce the variance of the estimator of the mean response in a simulation experiment. Combined Method applies antithetic variates (partially) for driving approiate stochastic model components to reduce the vaiance of estimator and utilizes the correlations between the response and control variates. We obtain the variance of the estimator for the response analytically and compare Combined Method with control variates method. We explore the efficiency of this method in reducing the variance of the estimator through the port operations model. Combined Method shows a better performance in reducing the variance of estimator than methods of antithetic variates and control variates in the range from 6% to 8%. The marginal efficiency gain of this method is modest for the example considered. When the effective set of control variates is small, the marginal efficiency gain may increase. Though these results are from the limited experiments, Combined Method could profitably be applied to large-scale simulation models.

  • PDF

Simulation Analysis of Control Variates Method Using Stratified sampling (층화추출에 의한 통제변수의 시뮬레이션 성과분석)

  • Kwon, Chi-Myung;Kim, Seong-Yeon;Hwang, Sung-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.133-141
    • /
    • 2010
  • This research suggests a unified scheme for using stratified sampling and control variates method to improve the efficiency of estimation for parameters in simulation experiments. We utilize standardized concomitant variables defined during the course of simulation runs. We first use these concomitant variables to counteract the unknown error of response by the method of control variates, then use a concomitant variable not used in the controlled response and stratify the response into appropriate strata to reduce the variation of controlled response additionally. In case that the covariance between the response and a set of control variates is known, we identify the simulation efficiency of suggested method using control variates and stratified sampling. We conjecture the simulation efficiency of this method is better than that achieved by separated application of either control variates or stratified sampling in a simulation experiments. We investigate such an efficiency gain through simulation on a selected model.

Efficiency of Estimation for Parameters by Use of Variance Reduction Techniques (분산감소기법을 이용한 파라미터 추정의 효율성)

  • Kwon Chi-myung
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.129-136
    • /
    • 2005
  • We develop a variance reduction technique applicable in one simulation experiment whose purpose is to estimate the parameters of a first order linear model. This method utilizes the control variates obtained during the course of simulation run under Schruben and Margolin's method (S-M method). The performance of this method is shown to be similar in estimating the main effects, and to be superior to S-M method in estimating the overall mean response in a given model. We consider that a proposed method may yield a better result than S-M method if selected control variates are highly correlated with the response at each design point.

  • PDF

Variance Reductin via Adaptive Control Variates(ACV) (Variance Reduction via Adaptive Control Variates (ACV))

  • Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.91-106
    • /
    • 1996
  • Control Variate (CV) is very useful technique for variance reduction in a wide class of queueing network simulations. However, the loss in variance reduction caused by the estimation of the optimum control coefficients is an increasing function of the number of control variables. Therefore, in some situations, it is required to select an optimal set of control variables to maximize the variance reduction . In this paper, we develop the Adaptive Control Variates (ACV) method which selects an optimal set of control variates during the simulation adatively. ACV is useful to maximize the simulation efficiency when we need iterated simulations to find an optimal solution. One such an example is the Simulated Annealing (SA) because, in SA algorithm, we have to repeat in calculating the objective function values at each temperature, The ACV can also be applied to the queueing network optimization problems to find an optimal input parameters (such as service rates) to maximize the throughput rate with a certain cost constraint.

  • PDF

Combined Correlation Methods for Multipopulation Metamodel (다분포 대형 시뮬레이션 모형에 대한 결합상관방법)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • This research develops two variance reduction methods for estimating the parameters of the experimental simulation model having multiple design points based on an approach focusing on reduction of the variances of the mean responses across multiple design points. The first method extends a combined approach of antithetic variates and control variates for a single design point to the multipopulation context with independent streams across the design points. The second method extends the same strategy in conjunction with the Schruben-Margolin method for improving the first method. We illustrate an example for implementing the second method. We expect these two approaches may improve the estimation of the parameters of interest compared with the control variates method.

  • PDF

Application of Variance Reduction Techniques in Designed Simulation Experiments (시뮬레이션 실험설계에서 분산감소기법의 응용)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • We develop a variance reduction technique in one simulation experiment whose purpose is to estimate the parameters of a first-order linear model. This method utilizes the control variates obtained during the course of simulation run under Schruben and Margolin's method (S-M method). The performance of this method is shown to be similar in estimating the main effects, and to be superior to S-M method in estimating the overall mean response in the hospital simulation experiment. For the general case, we consider that a proposed method may yield a better result than S-M method if selected control variates are highly correlated with the response at each design point.

  • PDF

Control Variates for Percentile Estimation of Project Completion Time in PERT Network (통제변수를 이용한 PERT 네트워크에서 프로젝트 완료확률의 추정)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.67-75
    • /
    • 2000
  • Often system analysts are interested in the estimation of percentile for system performance. For instance, in PERT network system, the percentile that the project. Typically the control variate method is used to reduce the variability of mean response using the correlation between the response and the control variates with a little additional cost during the course of simulation. In the same spirit, we apply this method to estimate the percentile of project completion time in PERT system, and evaluate the efficiency of the controlled estimator for its percentile.1 Simulation results indicate that the controlled estimators are more effective in reducing the variances of estimators than the simple estimators, however those tend to a little underestimate the percentiles for some critical values. We need more simulation experiments to examine such a kind of bias problem. We expect this research presents a step forward in the area of variance reduction techniques of stochastic simulation.

  • PDF

Stochastic Optimization Method Using Gradient Based on Control Variates (통제변수 기반 Gradient를 이용한 확률적 최적화 기법)

  • Kwon, Chi-Myung;Kim, Seong-Yeon
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.49-55
    • /
    • 2009
  • In this paper, we investigate an optimal allocation of constant service resources in stochastic system to optimize the expected performance of interest. For this purpose, we use the control variates to estimate the gradients of expected performance with respect to given resource parameters, and apply these estimated gradients in stochastic optimization algorithm to find the optimal allocation of resources. The proposed gradient estimation method is advantageous in that it uses simulation results of a single design point without increasing the number of design points in simulation experiments and does not need to describe the logical relationship among realized performance of interest and perturbations in input parameters. We consider the applications of this research to various models and extension of input parameter space as the future research.

SIMULATION EFFICIENCY FOR MULTI-PRODUCTION MODEL

  • Kwon, Chi-Myung
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.8-8
    • /
    • 1992
  • Through a simulation experiment, often an experimenter is concerned with estimating the system parameters of the linear model consisting of m design points from the outputs oft the simulation model. To improve the estimation of the system parameters and reliability of these estimators, appropriate simulation techniques have been developed. For the first order linear model, Schruben and Margolin (1978) exploited the random number assignment rules which uses a combination of common random numbers and antithetic streams in a simulation experiment designed to estimate the system parameters when the design matrix of simulation model admits orthogonal blocking into two blocks. Nozari, Arnold and Pegden (1984) developed a method for appliying the method of control variates to the situation of the linear model having multiple design points. This talk deals with a different way of utilizing controls under the correlation induction strategy of Schruben and Margolin's to improve the simulation efficiency, and presents a procedure for obtaining the estimators of the system parameters analytically. Simulation results on a selected simulation model indicate a promising evidence that a proposed method may yield better results than Schruben and Margolin's method.

  • PDF