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Simulation Efficiency for Estimation of System Parameters in Computer Simulation”

Abstract

We focus on a way of combining the Monte Calro methods of antithetic variates and control

variates to reduce the variance of the estimator of the mean response in & simulation experiment.
Combined Method applies antithetic variates (partially) for driving approiate stochastic model
components to reduce the vaiance of estimator and utihzes the correlations between the reponse
and control variates. We obtain the variance of the estimator for the response analytically and
compare Combined Method with control variates method. We explore the efficiency of this method
in reducing the variance of the estimator through the port operations model. Combined Method
shows a better performance in reducing the variance of estimator than methods of antithetic
variates and control variates in the range from 6% 1o 8%. The margmal efficiency gain of ithis
method is modest for the example considered. When the effective set of control variates 1s small,
the marginal efficiency gain may increase. Though these results are from the limited experiments,

Combined Method could profitably be applied to large-scale simulation models.

1. Introduction

In a designed simulation experiment, often an
experimenter is concerned with estimating the
mean response of interest from the outputs of
the simulation model. Frequently, large-scale
systems analysis through simulation requires an

extensive experimentation with a simulation
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model to obtain accceplable precision in the
estimator of interest. If we can reduce the
variance of the estimator at little additional
cost, we can obiain greater precision of the
estimator with the same amount of simulation.
In this work, we propose a new method of
combining two variance reduction techniques
for improving the estimation on the mean
repsonse of interest.

For a single population model, usually
antithetic variates and control variates are

applied to reduce the error of the estimator for
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the mean response. The method of antithetic

variates  assigns complementary randem
numbers. to pairs of simulation runs taken at a
single design point to induce a negative
correlation between the responses[5, 61. If the
covariance between two responses obtained by
then the
variance of the estimator for the mean response

is less than that obtained by two independent

antithetic replicates is negative,

replicates.

In contrast io the approach of antithetic
the method
attempts to exploit correlations between the

variates, of control variates
response and selected control variates within a
single run. Let y, and ¢ be the response of
interest and the (sx1) vector of control
variates, respectively, cbtained from the ith
simulatien run with E{¢]=0(i=1, 2, ---, 2h). In
the context of performing 2h independent
replications of the simulation, the normality
assumption on the response of interest and
control variates allows thai the response is

represented as the {ollowing linear model ;
y=plu+Ca+e, (1)

B y2h)’, 121. is a (2h><1)
vector of 1's, C is a (2hxs) control variate

where y={(y, y.

matrix whose ith row consists of ¢, g, is the
parameter of the mean response, ¢ is a (sx 1)
coefficient vector of control variates, and ¢ is
the (2h x1) vector of error terms[7]. The least
squares estimators of @ and g in the linear
model in (1) are given by, respectively,

@=(C'PC)"'C'Py and /o, =y—¢'4,

where ¥ and ¢ are the mean respense and the
mean control variate observations across 2h
replications, and P=1,,— 1,1’ /2h{ 10]. Under
the assumption that each of £ is 1ID N(0, ¢2,,.),
where ¢°.;. is the conditional variance of y
given c, the least squares estimator /. is an

unbiased estimator for y,. We let ag’, and > be
the variance of y, and the covariance of ¢,
repectively. We also let ¢.. be the covaiance
between y, and c¢. Leavenberg, Moeller and
Welch[7] showed that the unconditional vari-
ance of g, is given by

Var(z,)=[(2h—2)/(2h—s—2)](1~R%.)
¢%./2h, (2)

where R’ .=, %.. 3. .. is the square of the
multiple correlation coefficient between y, and
c. They defined the quantity (2h-2)/( 2h-s-2)
as the loss factor due to the estimation of the
unknown parameter @ in (1), and (1—R.?) as
the minimum variance ratio which represents
the potential for reducing the variance of the
estimalor by the control variates. Thus, the
efficiency of control variates is measured by the
product of the loss factor and the minimum
variance ratio.

In this research, our main interest is to
combine these two variance reduction methaods
that utilize correlations bétween simulation
output either within a single run or across
different replications in one simulation experi-
ment for improving the estimation of the mean
response of interest. Suppose that through
correlated replications of simulation runs, we
get a reduced variance of the estimator for the
mean response and yet maintain the same
correlation between the response and control
variates as those obtained under independent
replications. Then it is conjectured that we may
take advantage of both antithetic variates and
control variates together in one simulation run,
and reduce the variance of the estimator
further than by applying either the antithetic
variates method or the control variates methad
separately,

Based on this conjecture, this research fo-
cuses on developing a new method of combining
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antithetic variates and control variates for the
estimation of the mean response. For this pur-
pose, we consider a method of utilizing induced
correlations between: {a) the responses of inter-
est, and (b} the response and a set of controt
variates obtained by an appropriate assignment
of random numbers streams through the repl-
cations, and try to improve upon the simulation
efficiency of the control variastes method. :

2. Simulation Efficiency of Combined Method

In computer simulation, random number
streams that drive a simulation model are under
the control of the experimentler and completely
determine the simulation output. Let the
random number stream r, denote the sequence
of random numbers used lor driving the jth
stochastic component of the simulation model at
the ith relication{i=1, 2, ---, 2h, j=1, 2, ---, g).
Also let R; be the set of g random streams for
the ith replication:

R;Z(I‘;l, Tizs """y r‘;s) fOl" 1=1, 2, ity 2h.

We now consider the random number
assignment assignment strategy of jointly
utilizing antithetic variates and control variates
for a simulation model which requires g such
random number streams to drive all of its
stochastic components at a single replication.
To this end, we separate R, into two mutually
exclusive and exhaustive subsets of random
number streams, (R,, Rz} {i=1, 2, ---, 2h). The
first subset, R, consisting of (g-s) random
number streams is used to drive the non-control
stochastic model components. The second
subset, R, consists of s random number
streams used to drive the control variate
stochastic model components.

We consider the correlated replication st-

rategy: use antithetic variates for all stochastic
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compenents except the control variates across
2h replications. Through statistical analysis and
simulatioh experimentation, we will explore how
this method may improve the simulation effici-
ency in reducing the variance of the estimator,
and what conditions are necessary for this
method to ensure an improvement in variance
reduction. That is, within the ith paired
replications, this method uses (R; ;. Ru-,2)
and (Hza i.1» Ba2) where Ra_i, Ryoy; and Re
are sets of rendomly selected random number
streams, and R;,—, |, is antithetic to R,_. . Acro-
ss pairs of replications, this method uses
independent streams. Thus, the ith pair of
responses, vx-,» and yy {i=1, 2, -+, h), are
negatively correlated by antithetic stréams
through the non-control stochastic components.
However, through the 2h replication, the control
variates ¢ (i=1, 2, -+, 2h) are independently
generated by the assignment of independent
streams through the control variate stochastic
components at each replication. Due 1o
independent streams for the control varates,
the response yu -, (yz) is independent of control
variates ¢, (C;—,) within a paired simulation
output. Based on the above discussions, we

establish the following assumptions:

1. Var(y,)=a/4 for i=1, 2, ---, 2h(homogeneity

of response variances across replicates).

2. Cov{y, y)=—pai(p >0), if j=]+1(i=1, 3,
.-+, 2h—1} (homogeneity of induced negative
correlations  across  replicates  pairs).

Otherwise, Cov(y, v,)=0.

3. Covly, ¢) =0, fori=1, 2, -, 2h{homoge-
neity of control variates response covariance
across replicates), and Cov(y, ¢)=0", for i
_—_j‘

4, Cov{e)=22, for i=1, 2, ---, 2h(homogeneity
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of control variates covariance structure ac-ross
replicates).

5. Cov(c, ¢)=0.., for i=j{independence of
control variates between replicates,)

Under these assumptions, the variances of the
mean responses and mean control variates
within the ith replication pair, ¥,= (y2_,+y2)/2
and ¢;= (ca_+¢,)/2 are given by, respectively,

Var(y.)={(1—p)0.%/2, and Cov{c)=2./2.

Also, the covariance between v, and ¢, is given
by

Cov(yu ¢.)=Cov{(ya-1+ ¥z, car+cz)/4
=6. /2.

Thus, the joint normality assumption of the
response and control variates given the joint
distribution of v, and ¢, as follows:

EHEY R S
(3)

Consequently, y,, given ¢, is normally distributed
with expectation E[v,|c]=m+a ¢ and vari-

ance

Var(;i |E|) = [(1 -0 )6\'2_6\1‘, Ec_1 U\'c]/z'
(4)

{see Thecrem 2.5.1 in Anderson [1]). As with
the case of the linear relationship in {1), the
(hx1) vector of the mean paired responses, y=
(¥, ¥n*'» ¥»)”, can be represented as the fo-

llowing linar model:
y=p1,+Ca+e*, (5)

where Cis a (hxs) control variate matrix
whose ith row is ¢,” and e* represents the (hx
1) vector of errer terms to determine y. Regre-
ssion analysis on this linear model yields the

controlled estimator for the mean response as
%=1 {y—C(C QC TQy/h
=1 [L—CCQC)"T'Qly/h,

where Q=1,—1,1," /h. Given C, taking the ope-
ration of variance on the above equation yields

Var([C)=1/0* 1,"[[,—C(T’'QC)'T’Q]
Var(y [C){1,—QCUT'QC)~'C" L.

Since (v, c,) of the ith pair of simulation ouiput
15 independent of that of a different pair of
replications, from equation (4}, we have

Var(y|C)={(1—p)o.'—0..' 2 0. |L/2.
Substituting for Var{y|C) into Var(z, |C) gives

Var(i |C)=r?(h | 1,'TTC'QT) 'T'1,)
/(2h?), (6)

where 7,2=[{1—p )aﬁ—a‘vc’E;lﬁ\-J

since @1,=1,"Q=0. We note that the variance

of s is given by

Var(z, ) =Var[E(4 |C)]+E[Var(z |T) 1.
(7}

Given C, by the Theorem 2.5.1 in Anderson [1],
Elvilc]=p+e 20, We also note that
=(y,¥» ¥» ). Thus, the conditional
expectation of , is

E[|C)=1"[L-T(C'aC)"'C'Q) |
E[y|Cl/h
=1"[L-CC'QT) T’ Q]
[21,—C% 0. )/h.

Since @1,=0, we have

E[ﬁ\ IC]1=1"[11.4CZ 0.
=TT Q0 (T Al .. 1/h
- ]. '_-.;,f..,l,,/h:;,z‘..

Therefore the first term in (7) reduces to zero,
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and we consider only the second ierm in
obtalning the unconditional variance of ..

From the result of (3) and assumption 5, the
{hxs) random matrix C has the matrix normal
distribution: C ~N, {0, 1, 3./2), where 0 s a
(hxs) matrix of zeroes. Thus, by definition of
the Wishart distribution (see Section 17.3 in
Arnold [2]), T(T/2)"'T’' ~Wi(s, I,) and, by
Theorem 17.7a in [2], the (sxs) random matrix
(C'QT) follows the Wishart distribution: (G
QC)~W,(h—1, 2./2) since Q is an idempotent
matrix with rank (h-1). We note that (1,'C)
and (C'QC) are independent. Thus, the expec-
tation of the conditional variance in (6) can be
written as

Var(/2.)=E[ Var(/2]T)]
=r%/(2h%)
Elh+1,’CE[C'QC)'IC'1,]. (&)

Theorems 17, 6a and 17.15d in Arnold [2] give,

respectively,

E[C(3./2)~T’ |=sl,, and E[(C'PC)"']
=[(Z/2) /th—s=2)]if
h>>(s+2).

Therefore, plugging the second equation of the
this equation into (8) finally yelds

Var()=r%/(2h%)[h+hs/(h—s—2)]
=[th—-2)/(h—-s—2)](1—p —R.2)
o.%/(2h) {9

where R.. is the multiple correlation coeffictent
between y; and c, (1=1, 2, ---, 2h). This result
indicates thai the minimum varance ratio of
this method 15 (1-¢-R.*), and the loss factor is
(h-2)/(h-s-2).

3. Comparison of Combined Method and
Control Variates Method

We compare Combined Method developed in

the previous section and the method of control
variates with respect to. the unconditional
variances of the estimators for the mean
response, and summarize these resulis. A
comparison of equations {2) and (9) yields that
Combined Method is better than the control
variates method if

{1-p-R.2)(h-2}/(h-5-2) <
(1-R.2){2h-2)/(2h-s-2),

As shown in this equation, the loss factor of
Combined Method is greater than that of the
control variates method. Hence, for preference
of the Combined Method to the control variates
method, the minimum variance ratio of the
Combined Method should, at least, compensate
for an increase in the asssociated loss factor. As
we see, the effects of antithetic wvariates
partially through the non-control stochastic
components and control variates to the
minimum variance ratio for Combined Method
is represented by an additive form in reducing
the variance of the estimator for the mean
response.

4. Example

We conducted a set of simulation experiments
ocn a system to evaluate the performance of
Combind Method in reducing the variance of the
estimator, We offer brief descriptions of the
system of interest and the methods used to
simulate 1t.

Figure 1 shows the port operations model
{see p.197 in Pritsker [9]). A port in Africa is
used to load tankers with crude oil for
overwater shipment. The port has facilities for
loading as many as three tankers simul-
taneously. The tankers, which arrive at the port
according to a uniform distribution with range
[ 4, 18] hours, are of three types. The relative
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frequency of the various types. their loading
time requirements, and their distributions of
loading time as follows:

type relative  loading time(hours)

frequency  distribution

1 0.25 [16, 20]  uniform
2 0.55 [21,27] uniform
3 -0.20 [32,40] uniform

There is one tug at the port. Tankers of all
types require the services of this tug to move
into a berth, and later to move out of a berth.
When the tug is available, any berthing or
deberthing activity takes about one hour. Top
priority is given to the berthing activity. A
shipper is considering bidding on a comtract io
transfer oil from the port to the United
Kingdom. He has determined that 5 tankers of
a particular type would have to be committed to
this task to meet contract specifications. These
tankers would require [ 18, 24] hours, uniformiy
distributed, to load oil at the port. After loading
and deherthing, they would travel to the United
Kingdem, offload the oll, and return to the port
for reloading. Their round-tnp travel time,
including offloading, is estimated to be [216,
2647 hours with an uniform distribution. A
complicating factor is that the port experiences
storms. The time between the onsctl of storms is
exponentially distributed with a mean of 48
hours, and a storm lasts { 2, 6] hours, uniformly
distributed. No tug can start an operation until
a starm is over. Before the port authorities can
caommit themselves to accommodating the

proposed 5 tarnkers, the offect of the additional

port traffic on the in-port residence time of the
current porl users must be determined. It is
desired to simulate the operation of the port
over a two-year period (19,280 hours) under
the proposed new commitment to measurc in-
port residence time of the proposed additional
tankers, as well as the three types of tankers
which already use the port.

The port operations model includes nine
stochastic components to which nine separate
random number streams are assigned. Direct
simulation and antithetic variates, respectively,
use the same assignment rules in selecting a set
of nine random number strcams through the
replications as before. In using the control
variates method, seven possible slandardized
control wvariates present themselves(see the
definition of standardized control variate 11,
121}, That is, inter-arrival times of tankers of
three differenl types which are already in the
system, oil loading times of each tanker(three
regular types tankers and tankers on a
contract), round trip travel times of tankers on
a contract, and duration of storm. Weo collected
six control variates except the storm duration
contraol variales since we expected that the
frequency of storm is low and is in-port
residence time is small. Table 1 shows the
correlation matrix between the four responscs
of interest and the six collected control variaies
obtained by 200 independent replications. Based
on this table, we employed the threce control
variates of interarrival times of tankers already
in system and oil loading times of tankers of
type 1 and 2.

Table 1. Correltion Matrix between the Responses and Control Variates

€ <, Cs ¢y s Ci
¥ —0.68% 0.133 0.283 —0.049 —0.029 -0.040
¥ —0.675 0.133 0.278 —0.039 —0.015 —0.038
¥a —0.639 0.108 0.252 —0.040 —0.028 —0.033
7 —0.698 0.114 0.267 —0.059 —0.011 —0.042
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Tanker
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Contrac R
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Contract Tanker |
r

(a) Tanker Arrival and Port Operation Segment

Storm Departure
Arrival w1 of Storm

(b) Storm Segment
Figure 1, Port Operations Model
Combined Method employs (a) the same (stream 1, 2, and 3), are randomly selected,
assignment rule as a direct simulation for the and the others are set antithetic to their
first replicate within each pair of replication, counterparts in the first replication for the
and (b) a sct of nine random number sireams, second replication. However, across the pairs of

those that correspond to the control variates replications, each of these methods randomly
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selects a set of nine random number streams.
We coded this model in SLAM I and conducted
a simulation of this system 200 times for each
method. Each method simulated the model for
21000 hours, and collected ststatistics after
clearing data for the first 1000 hours to reduce
the initialization bias.

5. Experimental Results

This section provides a summary of simula-
tion results obtained by employing antithetic
variates, control variates and Combined Method
to the port operations model. To provide an
assessment of the efficiency gain obtained by
each estimation method, we calculated perfor-
mance statistics of the percentage reduction in
variance and width of a nominal 90% confi-
dence interval for each applied method.

When we peform 2h independent replications,
the mean response g, is estimated by its sample

mean y=31" v./(2h), and the (1-a)-level con-

fidence interval of . is given by
Vit (2h—1){V,/(2h) ],

where V, i1s the sample variance of yi{i=1, 2,
<+, 2h) and t_."*"" is the upper a/2-per-
centile point of the t-distribution with (2h-1)
degrees of freedom. In the context of antithetic
variates, the mean response is also estimated by
the sample mean response ¥ and

the confidence interval of x with confidence

level (1-a) is given by
¥t taman(h= DIV (],

where V, is the sample variance of the h mean
pair responses, v.{i=1, 2, -, h), and t,, ,..(h—
1) 1s the upper a/2-percentile point of the t-
distribution with (h-1) degrees of freedom. In
the context of the comtrel variates method, the

controlled estimator of the mean response is 2,
=y—¢ #=y—5. 8. ', where ¥ and ¢ are the
sample response of y, and ¢, respectively; & is
the estimator for the coefficient vector of the
conirol variates, S, is the sample covariance
matrix of ¢ and S,. i1s the sample covariance
malrix between y, and ¢, (i=1, 2, ---, 2h). In the
terms of the residual mean square of the lincar
model in (1),

=" [y —pm—c @)/ (2h—s—1),

the estimator for the variance of . is given by
V,=s,0% where s, denotes the first raw entry
in the first column of (G'G)"Y, with G={1,, C
—1a¢’) (see [121). Then the (1-a)-level
confidence interval for g, is given by

fttyn(Zh—s—D)[s,]"5,

where t,_.:(2h—s—1) is the upper a/2-
percentile of the i-distribution with (2h-s-1)
degrees of freedom. For Combined Method, the
estimators for & and g are given hy,
respectively, =5.7'S,." and .=y —c’&, where

S.=3"_ (c—2)(&—%) /{h—1) and
S.=31 (y—¥)c—c).

Based on regression analysis, the residual mean

square of this method iz given by
“2 b - A=A,
0,=2,_,[vi—ae—c al/(h-s-1)

{see p.53 Myers [8]), and the variance cstima-

~ . ~Z
tor of g, is given by V,=s,6,, where s,, denotes

the first-raw and the first-column clement of
{D’'D)~* with D=(1,,C—1,¢"). Thus, the {1-a)
-level confidence interval of x4, is given by

ﬁ\- Ftean(h—s—1 )[Sn]”2 35

where t-.»,(h—s—1) is the upper a/2-percen-
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tile of the t-distribution with (h-s-1) degrees of
freedom. ‘

We measure the performance of each method
by percentage reductions in variance of the
estimator V,(m=2, 3, 4), and half-length of
the (1-a)-level confidence interval of g with
respect to those obtained by direct simulation.

For the kth response in a given model, we let

V... =the sample estimator of the variance of
IiN and

H. .=half-length of the (1-a)-level confid-

cnce interval corresponding to V. .
With respect to this notation, we have

variance reduction(% )Y=100[V, . — V.. 1/V. :
and

confidence interval half-length reduction{ %)
=100[H,, _Hm.k]/HLkw

Tables 2 and 3, respectively, summarize the
results on percentage reduclions in variance
and 90% half-length confidence intervals for
each response of inlercst{control variates used
the three most effective ones). In compuling the
efficiency of control variates method, regression
analysis on all six control variates indicates
reduction in variance for each response of
interest in the range from 40% to 50%. When
we chose the three most effective control
variates(¢,, ¢, ¢) in Table 1, regression
analysis showed an increment of reduction in

variance for each response by around 3%.

Table 2. Percentage Reduction in Variance

Estimator Antithetic Contol Combined
(Sojourn Time in port) Variates Variates Method
Tanker 1 51.63 53.23 60.06
Tanker 2 51.16 50.37 56.80
Tanker 3 45.90 44,55 50.10
Tanker on Contract 54.00 53.03 61.15

Table 3. Percentage Reduction in 90% Confidence Interval

Estimator Antithetic Contol Combined
(Sojourn Time in port) Variates Variates Method
Tanker 1 29.70 31.61 36.10
Tanker 2 29.37 29.55 33.55
Tanker 3 25.66 25.54 28.58
Tanker on Contract 29.21 29.31 35.58

Based on the simulation results of this model,
we provide inferences in applying variance
reduction techniques as follows: (a) antithetic
variates and control variates reduce the
variance of the estimator for each response in
the range from 45% to 55%, and their

performances are similar; (b) the officiency
gain of Combined Method shows the additional
effect of antithetic variates to that of control
variates, and reduces the wvariance of each
estimator more than antithetic variates and

control variates in the range from 5% to 8%,
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and the 90% confidence interval in the range
from 3% to 6%.
6. Conclusions

From the simulation experiment on the
selected model, we note that (a) Combined
Method shows the additive effects of antithetic
variates {partially through the non-control sic-
chastic model components)and control variates
in reducing the variance of the estimator, and
(b) the performance of Combined Method was
better than those of contrel variates and
antithetic variates.

In combining antithetic variates and- control
variates, we used a sirategy using independent
streams for driving the control variates. We
may use an antithetic variates for driving the
control variates for the case that synchroni-
zation of random number streams is easily
achieved in the model. Generally, for a complex
madel, an effective set of control variates is
small. Also, the marginal effect of including one
more control variate is very small when there is
a strong correlation between a set of control
variates already used in the system and the
control variates to be added(see the discussion
of Beja [3]). Thus, Combined Method which is
based on using the effective control variates
and additionally trying to reduce the variance
of the estimator by the correlated replicates
may vield better rosults than applying either the
control variates or antithetic variates separately
for a complex model when the number of
replications is not small. We expect this result

may be useful in the design of a large-scale
simulation.
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