• Title/Summary/Keyword: Continuous Optimization Algorithm

Search Result 186, Processing Time 0.026 seconds

The Study on the Placements of Brace Members Using Optimum Seismic Design of Steel Frames (강골조 구조물의 내진 최적설계에 의한 브레이스 부재 배치에 관한 연구)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.111-119
    • /
    • 2005
  • This study presents continuous and discrete optimum design algorithm and computer programs for unbraced and braced steel frame structures under earthquake loads. The program, which is avaliable to perform structural analysis and optimum design, continuous and discrete, simultaneously is developed. And the program adopts various braced types, Untraced, Z-braced(V), Z-braced(inverse-V), X-braced(A), X-braced(B), X-braced(C) and K-braced, in steel structures with static loads and seismic effects. The objectives in this optimization are to minimize the total weight of steel, and design variables, based on the ultimate strength requirements of AISC-ASD specifications, the serviceability requirements and allowable story drift requirements of ATC-3-06, and various constraints. The purpose is to present proper braced type for seismic effects by comparing and analysing results of various cases.

A Generalized Markovian Based Framework for Dynamic Spectrum Access in Cognitive Radios

  • Muthumeenakshi, K.;Radha, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1532-1553
    • /
    • 2014
  • Radio spectrum is a precious resource and characterized by fixed allocation policy. However, a large portion of the allocated radio spectrum is underutilized. Conversely, the rapid development of ubiquitous wireless technologies increases the demand for radio spectrum. Cognitive Radio (CR) methodologies have been introduced as a promising approach in detecting the white spaces, allowing the unlicensed users to use the licensed spectrum thus realizing Dynamic Spectrum Access (DSA) in an effective manner. This paper proposes a generalized framework for DSA between the licensed (primary) and unlicensed (secondary) users based on Continuous Time Markov Chain (CTMC) model. We present a spectrum access scheme in the presence of sensing errors based on CTMC which aims to attain optimum spectrum access probabilities for the secondary users. The primary user occupancy is identified by spectrum sensing algorithms and the sensing errors are captured in the form of false alarm and mis-detection. Simulation results show the effectiveness of the proposed spectrum access scheme in terms of the throughput attained by the secondary users, throughput optimization using optimum access probabilities, probability of interference with increasing number of secondary users. The efficacy of the algorithm is analyzed for both imperfect spectrum sensing and perfect spectrum sensing.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Development of the method for optimal water supply pump operation considering disinfection performance (소독능을 고려한 송수펌프 최적운영기법 개발)

  • Hyung, Jinseok;Kim, Kibum;Seo, Jeewon;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.421-434
    • /
    • 2018
  • Water supply/intake pumps operation use 70~80% of power costs in water treatment plants. In the water treatment plant, seasonal and hourly differential electricity rates are applied, so proper pump scheduling can yield power cost savings. Accordingly, the purpose of this study was to develop an optimal water supply pump scheduling scheme. An optimal operation method of water supply pumps by using genetic algorithm was developed. Also, a method to minimize power cost for water supply pump operation based on pump performance derived from the thermodynamic pump efficiency measurement method was proposed. Water level constraints to provide sufficient disinfection performance in a clearwell and reservoirs were calibrated. In addition, continuous operation time constraints were calibrated to prevent frequent pump switching. As a result of optimization, savings ratios during 7 days in winter and summer were 4.5% and 5.1%, respectively. In this study, the method for optimal water pump operation was developed to secure disinfection performance in the clearwell and to save power cost. It is expected that it will be used as a more advanced optimal water pump operation method through further studies such as water demand forecasting and efficiency according to pump combination.

Prediction of the IGS RTS Correction using Polynomial Model at IOD Changes (IOD 변화 시점에서 다항식 모델을 사용한 IGS RTS 보정정보 예측)

  • Kim, Mingyu;Kim, Jinho;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.533-539
    • /
    • 2020
  • Real-time service (RTS) provided by IGS provides correction for GNSS orbit and clock via internet, so it is widely used in fields that require real-time precise positioning. However, the RTS signal may be lost due to an unstable Internet environment. When signal disconnection occurs, signal prediction can be performed using polynomial models. However, the RTS changes rapidly after the GNSS navigation message issue of data (IOD) changes, so it is difficult to predict when signal loss occurs at that point. In this study, we proposed an algorithm to generate continuous RTS correction information by applying the difference in navigation trajectory according to IOD change. The use of this algorithm can improve the accuracy of RTS prediction at IOD changes. After performing optimization studies to improve RTS prediction performance, the predicted RTS trajectory information was applied to precision positioning (PPP). Compared to the conventional method, the position error is significantly reduced, and the error increase along with the signal loss interval increase is reduced.

An Optimization of Hashing Mechanism for the DHP Association Rules Mining Algorithm (DHP 연관 규칙 탐사 알고리즘을 위한 해싱 메커니즘 최적화)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.13-21
    • /
    • 2010
  • One of the most distinguished features of the DHP association rules mining algorithm is that it counts the support of hash key combinations composed of k items at phase k-1, and uses the counted support for pruning candidate large itemsets to improve performance. At this time, it is desirable for each hash key combination to have a separate count variable, where it is impossible to allocate the variables owing to memory shortage. So, the algorithm uses a direct hashing mechanism in which several hash key combinations conflict and are counted in a same hash bucket. But the direct hashing mechanism is not efficient because the distribution of hash key combinations is unvalanced by the characteristics sourced from the mining process. This paper proposes a mapped perfect hashing function which maps the region of hash key combinations into a continuous integer space for phase 3 and maximizes the efficiency of direct hashing mechanism. The results of a performance test experimented on 42 test data sets shows that the average performance improvement of the proposed hashing mechanism is 7.3% compared to the existing method, and the highest performance improvement is 16.9%. Also, it shows that the proposed method is more efficient in case the length of transactions or large itemsets are long or the number of total items is large.

Network Design with Non-Linear Optimization Method (비선형(非線型) 최적화기법(最適化技法)에 의한 가로망설계(街路網設計))

  • Jang, Hyun Bong;Park, Chang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.165-172
    • /
    • 1988
  • An optimal network design method using continuous form of design variables is considered. Modified Hooke-and-Jeeves algorithm has been implemented in order to solve nonlinear progamming problem which is approximately equivalent to the real network design problem (NDP) with system. efficiency criteria(i. e. travel time and costs) and construction cost as objective function. Various forms of construction cost function, locations of initial solution, and dimension of initial step size of link improvement are taken into account to show the validity of this approach. The results obtained are quite promising in terms of the numbers of evaluations in solving NDP, and the speed of convergence. Finally, some techniques in choosing efficient intial solution, initial step size and approximation are given.

  • PDF

Performance Improvement of Continuous Digits Speech Recognition Using the Transformed Successive State Splitting and Demi-syllable Pair (반음절쌍과 변형된 연쇄 상태 분할을 이용한 연속 숫자 음 인식의 성능 향상)

  • Seo Eun-Kyoung;Choi Gab-Keun;Kim Soon-Hyob;Lee Soo-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • This paper describes the optimization of a language model and an acoustic model to improve speech recognition using Korean unit digits. Since the model is composed of a finite state network (FSN) with a disyllable, recognition errors of the language model were reduced by analyzing the grammatical features of Korean unit digits. Acoustic models utilize a demisyllable pair to decrease recognition errors caused by inaccurate division of a phone or monosyllable due to short pronunciation time and articulation. We have used the K-means clustering algorithm with the transformed successive state splitting in the feature level for the efficient modelling of feature of the recognition unit. As a result of experiments, 10.5% recognition rate is raised in the case of the proposed language model. The demi-syllable fair with an acoustic model increased 12.5% recognition rate and 1.5% recognition rate is improved in transformed successive state splitting.

  • PDF

Performance Improvement of Continuous Digits Speech Recognition using the Transformed Successive State Splitting and Demi-syllable pair (반음절쌍과 변형된 연쇄 상태 분할을 이용한 연속 숫자음 인식의 성능 향상)

  • Kim Dong-Ok;Park No-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1625-1631
    • /
    • 2005
  • This paper describes an optimization of a language model and an acoustic model that improve the ability of speech recognition with Korean nit digit. Recognition errors of the language model are decreasing by analysis of the grammatical feature of korean unit digits, and then is made up of fsn-node with a disyllable. Acoustic model make use of demi-syllable pair to decrease recognition errors by inaccuracy division of a phone, a syllable because of a monosyllable, a short pronunciation and an articulation. we have used the k-means clustering algorithm with the transformed successive state splining in feature level for the efficient modelling of the feature of recognition unit . As a result of experimentations, $10.5\%$ recognition rate is raised in the case of the proposed language model. The demi-syllable pair with an acoustic model increased $12.5\%$ recognition rate and $1.5\%$ recognition rate is improved in transformed successive state splitting.

A Preliminary Study of Enhanced Predictability of Non-Parametric Geostatistical Simulation through History Matching Technique (히스토리매칭 기법을 이용한 비모수 지구통계 모사 예측성능 향상 예비연구)

  • Jeong, Jina;Paudyal, Pradeep;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.56-67
    • /
    • 2012
  • In the present study, an enhanced subsurface prediction algorithm based on a non-parametric geostatistical model and a history matching technique through Gibbs sampler is developed and the iterative prediction improvement procedure is proposed. The developed model is applied to a simple two-dimensional synthetic case where domain is composed of three different hydrogeologic media with $500m{\times}40m$ scale. In the application, it is assumed that there are 4 independent pumping tests performed at different vertical interval and the history curves are acquired through numerical modeling. With two hypothetical borehole information and pumping test data, the proposed prediction model is applied iteratively and continuous improvements of the predictions with reduced uncertainties of the media distribution are observed. From the results and the qualitative/quantitative analysis, it is concluded that the proposed model is good for the subsurface prediction improvements where the history data is available as a supportive information. Once the proposed model be a matured technique, it is believed that the model can be applied to many groundwater, geothermal, gas and oil problems with conventional fluid flow simulators. However, the overall development is still in its preliminary step and further considerations needs to be incorporated to be a viable and practical prediction technique including multi-dimensional verifications, global optimization, etc. which have not been resolved in the present study.