Abstract
One of the most distinguished features of the DHP association rules mining algorithm is that it counts the support of hash key combinations composed of k items at phase k-1, and uses the counted support for pruning candidate large itemsets to improve performance. At this time, it is desirable for each hash key combination to have a separate count variable, where it is impossible to allocate the variables owing to memory shortage. So, the algorithm uses a direct hashing mechanism in which several hash key combinations conflict and are counted in a same hash bucket. But the direct hashing mechanism is not efficient because the distribution of hash key combinations is unvalanced by the characteristics sourced from the mining process. This paper proposes a mapped perfect hashing function which maps the region of hash key combinations into a continuous integer space for phase 3 and maximizes the efficiency of direct hashing mechanism. The results of a performance test experimented on 42 test data sets shows that the average performance improvement of the proposed hashing mechanism is 7.3% compared to the existing method, and the highest performance improvement is 16.9%. Also, it shows that the proposed method is more efficient in case the length of transactions or large itemsets are long or the number of total items is large.
DHP 연관 규칙 탐사 알고리즘의 가장 큰 특징은 단계 k-1에서 k 개의 항목으로 구성된 해시 키 조합에 대한 계수를 미리 실시하고, 이를 단계 k에서 후보 빈발 항목 집합을 구성할 때 전지 정보로 활용하여 그 크기를 줄임으로써 성능을 개선한다는 점에 있다. 이 때, 모든 해시 키 조합에 대한 계수를 독립적으로 관리할 수 있다면 가장 이상적이나, 메모리 소요가 너무 많으므로 여러 개의 해시 키 조합들이 계수 공간을 공유하는 직접 해싱 메커니즘을 활용한다. 그러나, 연관 규칙 탐사 알고리즘의 특성상 해시 키 조합의 분포 공간이 불규칙하여 해싱 함수에 일반적인 단순 제산 연산을 사용할 경우 직접 해싱의 효율이 저하된다. 이 논문에서는 단계 3을 위한 길이 3인 해시 키 공간을 연속되는 정수 공간으로 사상하여 직접 해싱의 효율을 극대화시키는 사상 완전 해싱 함수를 제안한다. 42개의 시험 데이터 유형을 대상으로 실험한 결과 제안된 해싱 함수는 기존 방법보다 평균 7.3%, 최대 16.9%의 성능 개선 효과가 있는 것으로 나타났고, 특히 평균 거래 길이, 평균 빈발 항목 집합의 크, 전체 항목의 개수 등이 클수록 성능 개선 정도가 높았다.