• Title/Summary/Keyword: Content layer

Search Result 1,666, Processing Time 0.035 seconds

Preparation and Gas Permeation Characteristics of Polyetherimide Hollow Fiber Membrane for the Application of Hydrogen Separation (수소분리를 위한 Polyetherimide계 고분자 중공사막의 제조 및 기체투과 특성)

  • Kwon, Hyeon Woong;Im, Kwang Seop;Kim, Ji Hyeon;Kim, Seong Heon;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.456-470
    • /
    • 2021
  • In this study, polyetherimide-based hollow fiber membranes were manufactured using the NIPS (nonsolvent induced phase separation) method. THF, Ethanol, and LiNO3 were used as additives to control the morphology of the PEI-hollow fiber membranes. Furthermore, for the development of a high hydrogen separation membrane, the spinning conditions were optimized through the characterization of SEM and gas permeance. As a result, as the content of THF increased, the hydrogen/carbon dioxide selectivity increased. However, the permeance decreased due to the trade-off relationship. When ethanol was added, a finger-like structure was shown, and when LiNO3 was added, a sponge structure was shown. In particular, in the case of a hollow fiber membrane with an optimized PDMS coating layer, the permeance was 40 GPU and the hydrogen/carbon dioxide selectivity was 5.6.

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

Study to Improve the Accuracy of Non-Metallic Pipeline Exploration using GPR Permittivity Constant Correction and Image Data Pattern Analysis (GPR 유전률 상수 보정과 영상자료 패턴분석을 통한 비금속 관로 탐사 정확도 확보 방안)

  • Kim, Tae Hoon;Shin, Han Sup;Kim, Wondae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.109-118
    • /
    • 2022
  • GPR (Ground Penetrating Radar), developed as a technology for geotechnical investigations such as sinkhole exploration, was used limitedly as a method to resolve undetectable lines in underground facility exploration. To improve the accuracy of underground facility data, the government made it possible to explore underground facilities using a non-metallic pipeline probe from July 2022. However, GPR has a problem in that the exploration rate is lowered in the soil with high moisture content, such as soft soil, such as clay layer, and there is a lot of variation in long-term accuracy. In this study, as a way to improve the accuracy of exploration considering the characteristics of GPR and the environment of underground facilities, we propose a GPR exploration method for underground facilities using permittivity constant correction and pattern analysis of GPR image data. Through this study, the accuracy of underground facility exploration and high reproducibility were derived as a result of field verification applying GPR frequency band and heterogeneous GPR.

Effect of Flux Chloride Composition on Microstructure and Coating Properties of Zn-Mg-Al Ternary Alloy Coated Steel Product (플럭스 염화물 조성이 Zn-Mg-Al 3원계 합금도금층의 미세조직 및 도금성에 미치는 영향)

  • Kim, Ki-Yeon;So, Seong-Min;Oh, Min-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.704-709
    • /
    • 2021
  • In the flux used in the batch galvanizing process, the effect of the component ratio of NH4Cl to ZnCl2 on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH4Cl·3ZnCl2 show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.

Growth and Physiological Responses of Four Plant Species to Different Sources of Particulate Matter

  • Kwon, Kei-Jung;Odsuren, Uuriintuya;Bui, Huong-Thi;Kim, Sang-Yong;Park, Bong-Ju
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.5
    • /
    • pp.461-468
    • /
    • 2021
  • Background and objective: Particulate matter (PM) has a serious impact on health. Recently, studies are conducted to reduce PM in an environmentally friendly way using plants. This study investigated the physiological responses of plants and their ability to remove PM by continuously spraying different PM sources (loam, fly ash, carbon black) to four native plant species, such as Iris sanguinea, Pteris multifida, Vitis coignetiae, and Viburnum odoratissimum var. awabuki. Methods: The four plant species were randomly placed in four chambers, and 0.1 g of different PM was injected into each chamber twice a week. We measured chlorophyll, carotenoid, chlorophyll fluorescence (Fv/Fm), total leaf area, amount of leaf wax, PM10 (sPM10) and PM2.5 (sPM2.5) on the leaf surface, and PM10 (wPM10) and PM2.5 (wPM2.5) on the wax layer. Results: For I. sanguinea and V. coignetiae, the sources of PM did not affect the growth response. P. multifida showed high chlorophyll a, b, total chlorophyll, and carotenoid content in carbon black as well as high Fv/Fm and total leaf area, thereby proving that carbon black helped plant growth. By PM sources, sPM10 showed a significant difference in three plant species, sPM2.5 in two plant species, and wPM10 in one plant species, indicating that sPM10 was most affected by PM sources. Conclusion: Carbon black increased the leaf area by affecting the growth of P. multifida. This plant can be effectively used for PM reduction by increasing the adsorption area. I. sanguinea and V. coignetiae can be used as economical landscaping plants since they can grow regardless of PM sources.

Soil properties and molecular compositions of soil organic matter in four different Arctic regions

  • Sujeong, Jeong;Sungjin, Nam;Ji Young, Jung
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.282-291
    • /
    • 2022
  • Background: The Arctic permafrost stores enormous amount of carbon (C), about one third of global C stocks. However, drastically increasing temperature in the Arctic makes the stable frozen C stock vulnerable to microbial decomposition. The released carbon dioxide from permafrost can cause accelerating C feedback to the atmosphere. Soil organic matter (SOM) composition would be the basic information to project the trajectory of C under rapidly changing climate. However, not many studies on SOM characterization have been done compared to quantification of SOM stocks. Thus, the purpose of our study is to determine soil properties and molecular compositions of SOM in four different Arctic regions. We collected soils in different soil layers from 1) Cambridge Bay, Canada, 2) Council, Alaska, USA, 3) Svalbard, Norway, and 4) Zackenberg, Greenland. The basic soil properties were measured, and the molecular composition of SOM was analyzed through pyrolysis-gas chromatography/mass spectrometry (py-GC/MS). Results: The Oi layer of soil in Council, Alaska showed the lowest soil pH and the highest electrical conductivity (EC) and SOM content. All soils in each site showed increasing pH and decreasing SOC and EC values with soil depth. Since the Council site was moist acidic tundra compared to other three dry tundra sites, soil properties were distinct from the others: high SOM and EC, and low pH. Through the py-GC/MS analysis, a total of 117 pyrolysis products were detected from 32 soil samples of four different Arctic soils. The first two-axis of the PCA explained 38% of sample variation. While short- and mid-hydrocarbons were associated with mineral layers, lignins and polysaccharides were linked to organic layers of Alaska and Cambridge Bay soil. Conclusions: We conclude that the py-GC/MS results separated soil samples mainly based on the origin of SOM (plants- or microbially-derived). This molecular characteristics of SOM can play a role of controlling SOM degradation to warming. Thus, it should be further investigated how the SOM molecular characteristics have impacts on SOM dynamics through additional laboratory incubation studies and microbial decomposition measurements in the field.

Quality Monitoring of Specification Standard of Gardeniae Fructus in the Korean Pharmacopoeia and Studies HPLC Standard Chromatogram (치자(梔子)의 규격 기준 모니터링 및 HPLC 표준크로마토그램 연구)

  • Kim, Kyoung Hee;Kim, Sun Mi;Shin, Seung Hoon;Lee, Young Jong;Baek, Wan Sook
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.97-105
    • /
    • 2017
  • Objectives : Gardeniae Fructus is a ripe fruit of Gardenia jasminoides Ellis, which has been used as traditional medicines for anti-inflammatory, diuretic, antipyretic, and antibacterial activity. The aim of this study was to compare of Gardeniae Fructus in South Korea collected during three years according to the standards in monographs of the Korean Pharmacopoeia Eleventh edition (KP11). Methods : 30 items of Gardeniae Fructus from two cultivation regions were classified into dried(n=15) & steamed (n=15) and tested according to the standards in monographs of the KP11. Gardeniae Fructus was carried out identification(comparison of colors, thin layer chromatography), heavy metals, residual pesticides, total ash, and assay registered at KP11. Add to we tested loss on dry, contents of ethanol-soluble extracts, and HPLC profiling. Results : In TLC chromatogram of identification test, the spot of gardenoside and geniposide were observed at $R_f$ value of about 0.3 and 0.5. Heavy metals and residual pesticides met the requirements of the standards for all samples. The results of total ash of each samples are measured maximum 4.87 %. According to HPLC for assay, the samples contain 4.80~6.10 % of geniposide and 0.45~1.83 % of gardenoside. Conclusion : We have verified the current specification standard of Gardeniae Fructus and standard that is not set. By the results, it is proposed a new draft of loss on drying and confirmed the content of gardenoside revised. HPLC standard chromatogram of Gardeniae Fructus is proposed. We hope that it will help the standardization of Gardeniae Fructus.

Bandgap Engineering in CZTSSe Thin Films via Controlling S/(S+Se) Ratio

  • Vijay C. Karade;Jun Sung Jang;Kuldeep Singh, Gour;Yeonwoo Park;Hyeonwook, Park;Jin Hyeok Kim;Jae Ho Yun
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • The earth-abundant element-based Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells (TFSCs) have attracted greater attention in the photovoltaic (PV) community due to their rapid development in device power conversion efficiency (PCE) >13%. In the present work, we demonstrated the fine-tuning of the bandgap in the CZTSSe TFSCs by altering the sulfur (S) to the selenium (Se) chalcogenide ratio. To achieve this, the CZTSSe absorber layers are fabricated with different S/(S+Se) ratios from 0.02 to 0.08 of their weight percentage. Further compositional, morphological, and optoelectronic properties are studied using various characterization techniques. It is observed that the change in the S/(S+Se) ratios has minimal impact on the overall Cu/(Zn+Sn) composition ratio. In contrast, the S and Se content within the CZTSSe absorber layer gets altered with a change in the S/(S+Se) ratio. It also influences the overall absorber quality and gets worse at higher S/(S+Se). Furthermore, the device performance evaluated for similar CZTSSe TFSCs showed a linear increase and decrease in the open circuit voltage (Voc) and short circuit current density (Jsc) of the device with an increasing S/(S+Se) ratio. The external quantum efficiency (EQE) measured also exhibited a linear blue shift in absorption edge, increasing the bandgap from 1.056 eV to 1.228 eV, respectively.

Hydrogeomorphological Characteristics and Landscape Change of Oegogae Wetland in Jirisan National Park (지리산 외고개습지의 수문지형특성과 경관변화)

  • YANG, Heakun;LEE, Haemi;PARK, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • Oegogae wetland is sub-alpine wetland which is formed in piedmont area in Jirisan National Park. Apparently Oegogae wetland seems to be well-protected wetland. Most alpine wetlands are located in the summit area, but Oegogae wetland is located in piedmont area which is transitional zone between the steep slope and relatively flat valley bottom. Oegogae wetland is active in terms of sedimentation and exceeds 1m in depth. Penetration tests show that composing material is soft such as peat and organic-rich sediment. Basal rock of the basin is gneiss and gneissic schist in general, which is good for the formation of wetland because those rocks are easy to form low permeability layer. Baseflow from the wetland takes control of the most of stream flow during the wet season and this is especially true during the dry season. Precipitation during the wet season increases water content and base flow from the wetland.

Prediction and Assessment on Consolidation Settlement for Soft Ground by Hydraulic Fill (준설매립 연약지반에 대한 압밀침하 예측 및 평가)

  • Jeon, Je-Sung;Koo, Ja-Kap;Oh, Jeong-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2008
  • This paper describes the performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area composed of soft marine clay with high water content and high compressibility. From field monitoring results, excessive ground settlement compared with predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared with field monitoring results after additional surcharge was applied. It might be used for verification of recalculated results.