DOI QR코드

DOI QR Code

Soil properties and molecular compositions of soil organic matter in four different Arctic regions

  • Received : 2022.10.04
  • Accepted : 2022.11.02
  • Published : 2022.12.31

Abstract

Background: The Arctic permafrost stores enormous amount of carbon (C), about one third of global C stocks. However, drastically increasing temperature in the Arctic makes the stable frozen C stock vulnerable to microbial decomposition. The released carbon dioxide from permafrost can cause accelerating C feedback to the atmosphere. Soil organic matter (SOM) composition would be the basic information to project the trajectory of C under rapidly changing climate. However, not many studies on SOM characterization have been done compared to quantification of SOM stocks. Thus, the purpose of our study is to determine soil properties and molecular compositions of SOM in four different Arctic regions. We collected soils in different soil layers from 1) Cambridge Bay, Canada, 2) Council, Alaska, USA, 3) Svalbard, Norway, and 4) Zackenberg, Greenland. The basic soil properties were measured, and the molecular composition of SOM was analyzed through pyrolysis-gas chromatography/mass spectrometry (py-GC/MS). Results: The Oi layer of soil in Council, Alaska showed the lowest soil pH and the highest electrical conductivity (EC) and SOM content. All soils in each site showed increasing pH and decreasing SOC and EC values with soil depth. Since the Council site was moist acidic tundra compared to other three dry tundra sites, soil properties were distinct from the others: high SOM and EC, and low pH. Through the py-GC/MS analysis, a total of 117 pyrolysis products were detected from 32 soil samples of four different Arctic soils. The first two-axis of the PCA explained 38% of sample variation. While short- and mid-hydrocarbons were associated with mineral layers, lignins and polysaccharides were linked to organic layers of Alaska and Cambridge Bay soil. Conclusions: We conclude that the py-GC/MS results separated soil samples mainly based on the origin of SOM (plants- or microbially-derived). This molecular characteristics of SOM can play a role of controlling SOM degradation to warming. Thus, it should be further investigated how the SOM molecular characteristics have impacts on SOM dynamics through additional laboratory incubation studies and microbial decomposition measurements in the field.

Keywords

Acknowledgement

This work was supported by Korea Polar Research Institute (KOPRI) grant funded by the Ministry of Oceans and Fisheries (KOPRI PE22400) and by the National Research Foundation of Korea funded by the Korean Government [NRF-2016M1A5A1901770, KOPRI-PN16082].

References

  1. Buurman P, Peterse F, Almendros Martin G. Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena. Eur J Soil Sci. 2007;58(6):1330-47. https://doi.org/10.1111/j.1365-2389.2007.00925.x.
  2. CAVM Team. Circumpolar Arctic Vegetation Map, scale 1:7 500 000. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. Anchorage: U.S. Fish and Wildlife Service; 2003.
  3. Chefetz B, Tarchitzky J, Deshmukh AP, Hatcher PG, Chen Y. Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil. Soil Sci Soc Am J. 2002;66(1):129-41. https://doi.org/10.2136/sssaj2002.1290.
  4. Corwin DL, Lesch SM. Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric. 2005;46(1-3):11-43. https://doi.org/10.1016/j.compag.2004.10.005.
  5. Corwin DL, Yemoto K. Salinity: electrical conductivity and total dissolved solids. Soil Sci Soc Am J. 2020;84(5):1442-61. https://doi.org/10.1002/saj2.20154.
  6. Feller C, Beare MH. Physical control of soil organic matter dynamics in the tropics. Geoderma. 1997;79(1-4):69-116. https://doi.org/10.1016/S0016-7061(97)00039-6.
  7. Gagosian RB, Peltzer ET, Merrill JT. Long-range transport of terrestrially derived lipids in aerosols from the south Pacific. Nature. 1987;325:800-3. https://doi.org/10.1038/325800a0.
  8. Gleixner G, Poirier N, Bol R, Balesdent J. Molecular dynamics of organic matter in a cultivated soil. Org Geochem. 2002;33(3):357-66. https://doi.org/10.1016/S0146-6380(01)00166-8.
  9. Gonzalez-Perez JA, Arbelo CD, Gonzalez-Vila FJ, Rodriguez AR, Almendros G, Armas CM, et al. Molecular features of organic matter in diagnostic horizons from andosols as seen by analytical pyrolysis. J Anal Appl Pyrolysis. 2007;80(2):369-82. https://doi.org/10.1016/j.jaap.2007.04.008.
  10. Gough L, Shaver GR, Carroll J, Royer DL, Laundre JA. Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J Ecol. 2000;88(1):54-66. https://doi.org/10.1046/j.1365-2745.2000.00426.x.
  11. Grandy AS, Strickland MS, Lauber CL, Bradford MA, Fierer N. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma. 2009;150(3-4):278-86. https://doi.org/10.1016/j.geoderma.2009.02.007.
  12. Gunina A, Kuzyakov Y. From energy to (soil organic) matter. Glob Chang Biol. 2022;28(7):2169-82. https://doi.org/10.1111/gcb.16071.
  13. Jensen LM, Rasch M, Schmidt NM. Zackenberg ecological research operations: 18th annual report 2012. Roskilde: Aarhus University, DCE - Danish Centre for Environment and Energy; 2013.
  14. Jobbagy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl. 2000;10(2):423-36. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
  15. Jung JY, Lee K, Lim HS, Kim H, Lee EJ, Lee YK. Soil organic carbon characteristics relating to geomorphology near Vestre Lovenbreen moraine in Svalbard. J Ecol Environ. 2014;37(2):69-79. https://doi.org/10.5141/ecoenv.2014.009.
  16. Jung JY, Michelsen A, Kim M, Nam S, Schmidt NM, Jeong S, et al. Responses of surface SOC to long-term experimental warming vary between different heath types in the high Arctic tundra. Eur J Soil Sci. 2020;71(4):752-67. https://doi.org/10.1111/ejss.12896.
  17. Karhu K, Auffret MD, Dungait JA, Hopkins DW, Prosser JI, Singh BK, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature. 2014;513(7516):81-4. https://doi.org/10.1038/nature13604.
  18. Klokk T, Ronning OI. Revegetation experiments at Ny-Alesund, Spitsbergen, Svalbard. Arct Alp Res. 1987;19(4):549-53. https://doi.org/10.2307/1551424.
  19. Kogel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem. 2002;34(2):139-62. https://doi.org/10.1016/S0038-0717(01)00158-4.
  20. Kuhn TK, Krull ES, Bowater A, Grice K, Gleixner G. The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Org Geochem. 2010;41(2):88-95. https://doi.org/10.1016/j.orggeochem.2009.08.003.
  21. Malmer N, Holm E. Variation in the C/N-quotient of peat in relation to decomposition rate and age determination with 210 Pb. Oikos. 1984;43(2):171-82. https://doi.org/10.2307/3544766.
  22. Mambelli S, Bird JA, Gleixner G, Dawson TE, Torn MS. Relative contribution of foliar and fine root pine litter to the molecular composition of soil organic matter after in situ degradation. Org Geochem. 2011;42(9):1099-108. https://doi.org/10.1016/j.orggeochem.2011.06.008.
  23. Matsumoto GI, Akiyama M, Watanuki K, Torii T. Unusual distributions of long-chain n-alkanes and n-alkenes in Antarctic soil. Org Geochem. 1990;15:403-12. https://doi.org/10.1016/0146-6380(90)90167-X.
  24. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr. 2009;79(4):523-55. https://doi.org/10.1890/08-2025.1.
  25. McLennan D, Wagner I, Turner D, McKillop R, MacKenzie W, Meidinger D, et al. Towards the development of the Canadian High Arctic Research Station (CHARS) as a centre for science and technology in Canada and the circumpolar North: regional, social and ecological context, baseline studies, and monitoring pilots. Polar Knowledge Canada Report; 2015.
  26. Nam S, Alday JG, Kim M, Kim H, Kim Y, Park T, et al. The relationships of present vegetation, bacteria, and soil properties with soil organic matter characteristics in moist acidic tundra in Alaska. Sci Total Environ. 2021;772:145386. https://doi.org/10.1016/j.scitotenv.2021.145386.
  27. Norwegian Meteorological Institute and the Norwegian Broadcasting. Weather statistics for Svalbard Airport observation site (Svalbard). 2014. https://www.yr.no/en/statistics/graph/5-99840/Norway/Svalbard/Svalbard/Svalbard%20LH. Accessed 25 Sep 2022.
  28. Park JS, Lee EJ. Geostatistical analyses and spatial distribution patterns of tundra vegetation in Council, Alaska. J Ecol Environ. 2014;37(2):53-60. https://doi.org/10.5141/ecoenv.2014.007.
  29. Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166(11):810-32. https://doi.org/10.1097/00010694-200111000-00007
  30. Pico Y, Barcelo D. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: focus on organic matter and microplastics. TrAC Trends Anal Chem. 2020;130:115964. https://doi.org/10.1016/j.trac.2020.115964.
  31. Ping C, Michaelson GJ, Kimble JM, Walker DA. Soil acidity and exchange properties of cryogenic soils in Arctic Alaska. Soil Sci Plant Nutr. 2005;51(5):649-53. https://doi.org/10.1111/j.1747-0765.2005.tb00083.x.
  32. Rhoades JD. Chapter 14 salinity: electrical conductivity and total dissolved solids. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, editors. Methods of soil analysis, part 3: chemical methods. Madison: Soil Science Society of America, Inc; 1996. p. 417-35.
  33. Ritchie GSP, Dolling PJ. The role of organic matter in soil acidification. Aust J Soil Res. 1985;23(4):569-76. https://doi.org/10.1071/SR9850569.
  34. Schellekens J, Almeida-Santos T, Macedo RS, Buurman P, Kuyper TW, Vidal-Torrado P. Molecular composition of several soil organic matter fractions from anthropogenic black soils (Terra Preta de Indio) in Amazonia - a pyrolysis-GC/MS study. Geoderma. 2017;288:154-65. https://doi.org/10.1016/j.geoderma.2016.11.001.
  35. Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience. 2008;58(8):701-14. https://doi.org/10.1641/B580807.
  36. Schuur EA, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature. 2009;459(7246):556-9. https://doi.org/10.1038/nature08031.
  37. Stewart CE. Evaluation of angiosperm and fern contributions to soil organic matter using two methods of pyrolysis-gas chromatography-mass spectrometry. Plant Soil. 2012;351:31-46. https://doi.org/10.1007/s11104-011-0927-3.
  38. Sudduth KA, Kitchen NR, Wiebold WJ, Batchelor WD, Bollero GA, Bullock DG, et al. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput Electron Agric. 2005;46(1-3):263-83. https://doi.org/10.1016/j.compag.2004.11.010.
  39. Tate III RL. Soil organic matter: biological and ecological effects. Malabar: Krieger Publishing Company; 1992.
  40. Thomas GW. Chapter16 soil pH and soil acidity. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, editors. Methods of soil analysis, part 3: chemical methods. Madison: Soil Science Society of America, Inc; 1996. p. 475-90.
  41. Thomas J. A study of factors controlling pH in Arctic tundra soils [thesis].  Umea: Umea University; 2019.
  42. Valentine DW, Binkley D. Topography and soil acidity in an Arctic landscape. Soil Sci Soc Am J. 1992;56(5):1553-9. https://doi.org/10.2136/sssaj1992.03615995005600050036x.
  43. Vancampenhout K, Wouters K, De Vos B, Buurman P, Swennen R, Deckers J. Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions - a pyrolysis-GC/MS study. Soil Biol Biochem. 2009;41(3):568-79. https://doi.org/10.1016/j.soilbio.2008.12.023.
  44. Weil RR, Brady NC. The nature and properties of soils. 15th ed. Boston: Prentice Hall; 2017.