• Title/Summary/Keyword: Construction Risk Assessment

Search Result 468, Processing Time 0.025 seconds

Economic Evaluation of IT Investments for Emergency Management : A Cost-centric Control Model

  • Kim, Tae-Ha;Lee, Young-Jai
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.3
    • /
    • pp.195-208
    • /
    • 2008
  • In an emergency management case, evaluating the economic value of information technology investments is a challenging problem due to the effects of decision making, uncertainty of disasters, and difficulty of measurements. Risk assessment and recovery process, one of the major functions in emergency management, consists of (1) measurement of damages or losses, (2) recovery planning, (3) reporting and approving budgets, (4) auctioning off recovery projects to constructors, and (5) construction for the recovery. Specifically and of our interest, measurement of damages or losses is often a costly and time-consuming process because the wide range of field surveys should be performed by a limited pool of trained agents. Managers, therefore, have to balance accuracy of the field survey against the total time to complete the survey. Using information technologies to support field survey and reporting has great potential to reduce errors and lowers the cost of the process. However, existing cost benefit analysis framework may be problematic to evaluate and justify the IT investment because the cost benefit analysis often include the long-run benefit of IT that is difficult to quantify and overlook the impact of managerial control upon the investment outcomes. Therefore, we present an alternative cost-centric control model that conservatively quantifies all cost savings to replace benefits in cost benefit analysis and incorporate the managerial control. The model provides a framework to examine how managerial decision making and uncertainty of disaster affect the economic value of IT investments. The current project in Emergency Agency in South Korea is introduced as a case to apply the cost-centric control model. Our work helps managers to better evaluate and justify IT-related investment alternatives in emergency management.

  • PDF

Assessment of Lifeline Construction Technology for Buried Alive in Building Collapse (도심지 붕괴사고에 따른 매몰지역 생명선 시공기술 평가)

  • Ryu, Byung-Hyun;Kang, Jae-Mo;Lee, Jangguen;Kim, Young-Sam;Joo, Rak-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.47-52
    • /
    • 2016
  • Unusual extreme weather events, which exceed a safe design capacity of the infrastructure, increase the frequency of natural disasters and has also been enlarged damage scale. Aging buildings and rapid urban progress act as weighting factors for the new composite disasters. Technological advances support detecting pre-disaster risk, real-time data analysis, and rapid response to the disaster site, but it is insufficient that emergency relief for buried alive must take advantage of the proven technologies through field tests. This study aims to evaluate directional drilling performance through underground soils and the reinforced concrete structure for primary lifeline installation in order to quickly provide relief supplies for buried alive when urban structures collapse.

Development and Rationalization of Maritime Traffic Facilities Management System (해양교통시설 운영관리 시스템 구축 및 합리화 방안)

  • Jeon, Min-Su;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.587-595
    • /
    • 2013
  • Establishment and operation of Aids to Navigation in the process of port design, construction and management are crucial factor of maritime safety and collision prevention. According to the IMO SOLAS Chapter 5, regulation 13, the establishment and operation of maritime safety facilities are mandated for the competent authorities. The facilities of Aids to Navigations are moving to a concept of e-Navigation with state-of-the-art technology of radio navigation equipments such as AIS, DGPS and e-Loran from the traditional visual facilities (optics, shape), Although the autonomous maritime traffic system is a new trend, yet the traditional and conventional Aids to Navigation like lighthouses and beacons are still imperative for vessel's safe navigation. In this paper, for decision of service level of maritime traffic facilities to enhance the efficiency of visual navigation system management it was proposed the Aids to Navigation availability as an efficient management system incorporating the whole maritime traffic facilities under one management system. Comparison of foreign level of services and analysis of the theoretical background of them were analyzed and the proposed LOS was applied to Incheon area to evaluate the safety of navigation routes.

A Study on the Assessment of Safety Performance for Complex Installation System of Stationary Fuel Cell and Boiler (건물용 연료전지-보일러 복합설치 안전성능 평가에 관한 연구)

  • Kim, Min-Woo;Lee, Eun-Kyung;Oh, Gun-Woo;Lee, Jung-Woon;Lee, Seung-Kuk
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • Interest in renewable energy is increasing for eco-friendly use of energy, and fuel cells are being used in various ways such as houses and buildings as power generation methods that have low emissions such as $NO_X$ and $CO_2$. As the supply of fuel cells expands, more and more boilers are installed in the existing buildings, but safety management is not being performed properly. Therefore, in this study, a prior study was conducted on the status of fuel cell-boiler complex installation and related criteria, and the risk factors were analyzed according to the installation environment and structure. Based on these standards, the safety performance of the fuel cell-boiler combined installation is assessed by conducting a demonstration using the starting product of the simulated operation to derive the installation criteria (proposal) for the fuel cell-boiler combined installation. The installation criteria (proposal) include the construction and connection method of the piping according to the fuel cell-boiler complex installation.

An Exploratory Study on Conceptual Framework for Project-based Supply Chain Management : Focusing on Plant Engineering Firms (프로젝트형 SCM의 개념적 틀에 관한 탐색적 연구 : 플랜트 엔지니어링 기업을 중심으로)

  • Kim, Tae Ung
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.123-135
    • /
    • 2018
  • The objective of this paper is to investigate the issues related to the supply chain management in plant engineering industry, and propose the framework to improve the project efficiency. The preliminary case study shows that EPC's fragmented nature, lack of coordination and information sharing, and lack of proper risk and change management contribute to project delay and cost overrun. To examine the level of informatization and information sharing in supply chain, survey responses from the suppliers and subcontractors have been collected. The statistical results show that information sharing, early involvement in design process and awareness in SCM have influenced the level of collaboration, but supplier assessment and informatization have no impact on the collaboration. A conceptual model is proposed in order to facilitate the integration of design, procurement and construction functions. Implications from the study are also provided.

A Study on the Safety Improvement of PSA System for Hydrogen Separation and Purification (수소분리 및 정제를 위한 PSA(Pressure Swing Adsorption)시스템 안전성향상에 관한 연구)

  • Oh, Sang-Gyu;Lee, Seul-Gi;Lee, Jun-Seo;Ma, Byung-Chol
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.7-19
    • /
    • 2022
  • Hydrogen purification is generally performed through chemical and physical methods. Among various types of purification method PSA(Pressure Swing Adsorption) is widely used with its purification capacity and economic efficiency. In Korea, most of the hydrogen used in automobiles and power generation fuel cells is purified using PSA. Hydrogen produced in petrochemical complexes has difficulties in transportation. The government is planning to install hydrogen extractors that produce hydrogen directly from consumers in connection with the city gas supply chain, and companies are also installing related research and demonstration facilities one after another. Europe and others have recently established safety standards related to PSA and are making efforts for systematic safety management at the construction and operation stage, but domestic safety standards related to PSA are still insufficient. This study aims to identify problems of existing facilities through surveys and risk assessment by companies operating existing PSA, and to prepare domestic technical standards including them in overseas technical standards to promote the safety of new and existing PSA systems.

Applied Time-Temperature Curve for Safety Evaluation in the Road Tunnel by Fire (도로터널내 화재에 따른 터널구조체의 안정성 평가를 위한 시간-온도곡선의 적용)

  • Won, Jong-Pil;Choi, Min-Jung;Jang, Chang-Il;Lee, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.551-555
    • /
    • 2009
  • This study is performed to apply a standard to evaluate fire protection assessment for tunnel structures when a fire breaks out in the road tunnel. Recently, a number of road tunnels have been rapidly increased and fire risk also multiplyed according to extend tunnel length, due to natural features and environmentally-friendly road construction in Korea. But we have not yet been prescribed appropriate time-temperature curve for tunnel fire. Therefore, we presented fire design model and investigated time-temperature curve proposed by a foreign country considering traffic, a kinds of vehicles which are a basis of heat rate. At the end, Hydrocarbon modified curve applied as design fire model by using numerical analysis and presented design fire model and examined the effects of tunnel structures.

Development of Fragility Curves for Slope Stability of Levee under Rapid Drawdown (수위급강하에 대한 제방 사면의 취약도 곡선 작성)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.27-39
    • /
    • 2023
  • To effectively manage flood risk, it is crucial to assess the stability of flood defense structures like levees under extreme flood conditions. This study focuses on the time-dependent probabilistic assessment of embankment slope stability when subjected to rapid water level drops. We integrate seepage analysis results from finite element analysis with slope stability analysis and employ Monte Carlo simulations to investigate the time-dependent behavior of the slope during rapid drawdown. The resulting probability of failure is used to develop fragility curves for the levee slope. Notably, the probability of slope failure remains low up to a specific water level, sharply increasing beyond that threshold. Furthermore, the fragility curves are strongly influenced by the rate of drawdown, which is determined through hydraulic analysis based on flood scenarios. Climate change has a significant impact on the stability of the water-side slope of the embankment due to water level fluctuations.

Proposed Sustainability Risk Framework through the Analysis of Advanced Donor Countries' International Development Cases (선진 공여국의 국제개발 사례 분석 기반 지속가능성 리스크 프레임워크 제안)

  • Lee, Kyung-Tae;Kim, Ju-Hyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.12-23
    • /
    • 2023
  • The goal of international development projects is to assist sustainable development in recipient countries through foreign aid from donor countries. However, despite the need for both countries to negotiate and work together from the initial stages to maintain sustainability after the project, clear guidelines or standards have not been established. Additionally, despite the need for donor countries, which are relatively advanced, to understand the situation of recipient countries, many projects are donor-centric and fail to prioritize the value of sustainability. Therefore, this study extracted economic, social, and environmental risks that threaten sustainability through literature review and proposed a sustainability framework based on these criteria. To validate framework, actual international development cases conducted by advanced donor countries such as Australia, the United States, and Japan, in collaboration with South Korea, were analyzed by applying content analysis with the reports, which covers the overall contents from the planning stage to the operation stage. Analysis of sustainability perspectives focused on economy, society and the environment, advanced donor countries emphasized (1) the importance of pre-assessment, (2) the need for coordination with the local population and communities despite the existence of donor-specific values, and (3) addressing economic considerations such as pre-operational and maintenance costs, social communication with the local population, and environmental considerations starting from the initial stages of construction regarding the treatment of pollutants as values to be improved. Compared to other advanced donor countries, the Republic of Korea should also focus on consultation with local residents to achieve social integration, and improve sustainability by deployment the managers in local sites for better negotiation.The proposed framework in this study will serve as a tool to enhance communication among the countries and the locals, with the expectation of increasing project efficiency and sustainability.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.