• Title/Summary/Keyword: Constant potential

Search Result 987, Processing Time 0.023 seconds

Real-time model updating for magnetorheological damper identification: an experimental study

  • Song, Wei;Hayati, Saeid;Zhou, Shanglian
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.619-636
    • /
    • 2017
  • Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Development of An Apparatus to Control Odorous Stimuli for Olfactory Evoked Responses

  • Min, Byung-Chan;Chung, S.C.;Min, S.W.;Kim, S.K.;Park, S.J.;Kim, C.J.;Shin, J.S.;Kim, J.S.;Lee, D.H.;Sakamoto, K.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.53
    • /
    • pp.69-78
    • /
    • 1999
  • We developed an apparatus for odorous stimuli control to record olfactory evoked potentials from human scalp. The characteristics of the apparatus were as follows. 1. Translating the subjects respiration into electric signals with a sensor attached to the nose. The period and timing of odorous stimuli could be adjusted, so that stimuli could be synchronous with respiration. 2. The respirations translated into electric signals were made constant in amplitude by using an auto gain control circuit. 3. The interstimulus interval of odorous could be arbitrarily selected once every 1 to 9 respirations so that adaptation could be prevented. We obtained olfactory - evoked potentials (OEPs) to odorous stimuli using this apparatus from the site of Cz, whose positive peak latencies were approximately $180{\pm}23ms$. Such response were not recorded if oxygen stimuli were used instead of odorous or with click sounds produced by the switching electromagnetic valve.

  • PDF

Three Dimensional Correction Factors for the Added Mass Moment of Inertia of Ships in Torsional Vibration (선체(船體)비틂진동(振動)에 있어서의 부가관성(附加慣性)모우멘트 3차원수정계수(次元修正係數))

  • K.C.,Kim;H.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.2
    • /
    • pp.15-22
    • /
    • 1974
  • As for the added mass moment of inertia of ships in torsional vibration, it seems that the works by T. Kumai[1,2] are the only systematic one available currently. The work[1] is for the calculation of the two dimensional correction factors with finitely-long elliptic cylinders as the mathematic model. In this work the authors recalculated the above factors, $J_{\tau}$, with the same mathematic model and the same problem formulation, and presented the numerical results in Fig. 1. The reason why the reinvestigation was done was that in Kumai's work he obtained the solutions of the Mathieu equations, which was derived from the problem formulation for the velocity potential, under the assumption that the dummy constant q involved in the equations was always far less than unity, whereas in fact it takes values within the region of $0<q{\leq}{\infty}$ in sequence. As a result the authors found two remarkable differences in general features of $J_{\tau}$(refer to Fg.3); one that the authors' numerical results are considerably higher than the results given in [2], and the other that for a given number of node those have properties of decreasing monotonically with increase of the beam-draft ratio while these rapidly decrease from a maximum value of near at B/T=2.00 with B/T becoming greater or less than ratio. It seems that the latter trend was resulted from the fact that the assumption of $q{\ll}1$ employed in [2] was more closely satisfied in the vicinity of B/T=2.00.

  • PDF

Molecular dynamic studies for elastic constant of SiC crystal at high temperature (고온에서 SiC 결정의 탄성율에 대한 분자동역학연구)

  • Park, B.W.;Shin, H.R.;Kim, J.H.;Im, J.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.232-236
    • /
    • 2010
  • Silicon carbide (SiC) ceramics are widely used in the application of high-temperature structural devices due to their light weight as well as superior hardness, fracture toughness, and temperature stability. In this paper, we employed classical molecular dynamics simulations using Tersoff's potential to investigate the elastic constants of the SiC crystal at high temperature. The stress-strain characteristics of the SiC crystal were calculated with the LAMMPS software and the elastic constants of the SiC crystal were analyzed. Based on the stress-strain analysis, the SiC crystal has shown the elastic deformation characteristics at the low temperature region. But the slight plastic deformation behavior was shown as applied the high strain over $1,000^{\circ}C$. Also the elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa as increased the temperature to $1,250^{\circ}C$.

The Co-luminescence Groups of Sm-La-pyridyl Carboxylic Acids and the Binding Characteristics between the Selected Doped Complex and Bovine Serum Albumin

  • Yang, Zhengfa;Tang, Ruiren;Tang, Chunhua
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1303-1309
    • /
    • 2012
  • A novel ligand N,N'-(2,6-pyridinedicarbonyl)bis[N-(carboxymethyl)] (L1) was designed and synthesized. Four co-luminescence groups of Sm-La-pyridyl carboxylic acids systems were researched, which are $K_4Sm_{(1-x)}-La_x(L_1)Cl_3{\cdot}y_1H_2O$, $K_4Sm_{(1-x)}La_x(L_2)Cl_3{\cdot}y_2H_2O$, $K_6Sm_{2(1-x)}La_{2x}(L_3)Cl_6{\cdot}y_3H_2O$, $K_4Sm_{(1-x)}La_x(L_4)Cl_3{\cdot}y_4H_2O$. The results indicated the addition of La(III) could sensitize the luminescence of Sm(III) obviously in a certain range, enhancing emission intensity of Sm-pyridyl carboxylic acids relative to the undoped ones. The optimal mole percentages of La(III) in the mixed ions for $L_1$, $L_2$, $L_3$, $L_4$ were confirmed to be 0.6, 0.5, 0.3, 0.6, respectively. The mechanism of the fluorescence enhancement effect was discussed in detail. Furthermore, the binding interaction of $K_4Sm_{0.4}La_{0.6}(L_4)Cl_3{\cdot}5H_2O$ with bovine serum albumin (BSA) have been investigated due to its potential biological activity. The binding site number n was equal to 1.0 and binding constant $K_a$ was about $2.5{\times}10^5\;L{\cdot}mol^{-1}$.

Application of Pine Peroxidase to the Amperometric Determination of Hydrogen Peroxidase (과산화수소의 전류법적 정량을 위한 소나무 과산화효소의 활용)

  • Yoon, Kil-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.329-334
    • /
    • 2013
  • A pine needle-embedded graphite enzyme electrode, of which bonding agent is CSM rubber, was newly designed and its electrochemistry was studied based on the amperometry. It involved a ground green leaves of pine tree as a zymogen together with electrochemical mediator, ferrocene within the paste. The plots of ln($i(1-e^{nf{\eta}})$) vs. ${\eta}$ and Lineweaver-Burk at the low potential (-100 to -500 mV) showed good linearities indicating that the amperometric response is by the catalytic power of pine peroxidase. Electrochemical parameters obtained, symmetry factor (${\alpha}$, 0.17), limiting current ($i_1$, 1.99 $A/cm^2$), exchange current density ($i_0$, $5.86{\times}10^{-5}\;A/cm^2$), Michaelis constant ($K_M$, $1.68{\times}10^{-3}$ M) and many others showed that pine peroxidase discharges the role of catalyst quantitatively on the electrode surface. Those proved that the practical use of pine peroxidase is promising in place of the marketed.

Electrochemical Behaviors for Cathodic Reaction of N'-aryl-N-alkyl-N-nitrosourea Drivatives (N'-aryl-N-alkyl-N-nitrosourea 유도체의 환원반응에 대한 전기화학적 거동)

  • Won, Mi Sook;Kim, Jack C.;Jeong, Euh Duck;Shim, Yoon-Bo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.11
    • /
    • pp.842-847
    • /
    • 1995
  • The electrochemical reduction reactions of N '-aryl-N-alkyl-N-nitrosourea derivatives with a glassy carbon electrode were diffusion controlled and irreversible. The exchange kinetic constant ko values for reduction reaction of the N '-aryl-N-alkyl-N-nitrosoureas were at the range of $1.48{\times}10^{-6}{\sim}5.32{\times}10^{-7}\;cm/sec.$ The $k_0$ values for phenyl substituted on the aryl position were about 1.3∼2.8 times higher than that of other substituents. The same substituent for aryl groups on the both of N '-aryl-N-alkyl-N-nitrosourea and N '-aryl-N-(2-chloroethyl)-N-nitrosourea exhibited same value. The $E_p$ value was shifted to the negative direction as pH increased. The number of protons participated to the reduction was 4∼5, respectively. The substituent effect of aryl group on the reduction potential was not observed in this case.

  • PDF

Permeability of Silver Sulfadiazine through Crosslinked Chitosan Matrices (가교키토산 매트릭스를 통한 Silver Sulfadiazine의 투과)

  • Nah, Jae Woon
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.9
    • /
    • pp.640-648
    • /
    • 1996
  • Crosslinked chitosan was prepared from chitin after reaction with epichlorohydrin followed by deacetylation at C2-position. Epidermal releasing polymeric matrix was prepared after swelling crosslinked chitosan with distilled water and adding silver sulfadiazine and glycerine as a plasticiser. The release behavior of silver sulfadiazine from polymeric matrix was studied in pH 7.4 phosphate buffer solution by varing the drug content, glycerine concentration, and the thickness of the matrix. The drug release time was delayed by increasing the content of silver sulfadiazine and the thickness of the matrix, whereas decreased as glycerine concentration increased. The apparent constant(K) of release rate was independent upon the matrix thickness, but was proportional to the content of drug or glycerine of crosslinked chitosan matrix. These results indicated that chitosan matrix showed some potential as a drug delivery system for transdermal therapeutic application.

  • PDF

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.