• Title/Summary/Keyword: Conjugacy

Search Result 67, Processing Time 0.021 seconds

FREE ACTIONS OF FINITE GROUPS ON 3-DIMENSIONAL NILMANIFOLDS WITH HOMOTOPICALLY TRIVIAL TRANSLATIONS

  • Koo, Daehwan;Park, Eunmi;Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.113-132
    • /
    • 2020
  • We show that if a finite group G acts freely with homotopically trivial translations on a 3-dimensional nilmanifold 𝓝p with the first homology ℤ2 ⊕ ℤp, then either G is cyclic or there exist finite nonabelian groups acting freely on 𝓝p which yield orbit manifolds homeomorphic to 𝓝/𝜋3 or 𝓝/𝜋4.

Duality in an Optimal Harvesting Problem by a Nonlinear Age-Spatial Structured Population Dynamic System

  • Kim, Yong-Kuk;Lee, Mi-Jin;Jung, Il-Hyo
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.4
    • /
    • pp.353-364
    • /
    • 2011
  • Duality in the optimal harvesting for a nonlinear age-spatial structured population dynamic model is studied in the framework of optimal control problem. In this paper the duality theory that displays the conjugacy of the primal problem is established and an application is given. Duality theory plays an important role in both optimization theory and methodology and the results may be applied to a realistic biological system on the point of optimal harvesting.

THE CRITICAL PODS OF PLANAR QUADRATIC POLYNOMIAL MAPS OF TOPOLOGICAL DEGREE 2

  • Misong Chang;Sunyang Ko;Chong Gyu Lee;Sang-Min Lee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.659-675
    • /
    • 2023
  • Let K be an algebraically closed field of characteristic 0 and let f be a non-fibered planar quadratic polynomial map of topological degree 2 defined over K. We assume further that the meromorphic extension of f on the projective plane has the unique indeterminacy point. We define the critical pod of f where f sends a critical point to another critical point. By observing the behavior of f at the critical pod, we can determine a good conjugate of f which shows its statue in GIT sense.

VARIOUS SHADOWING PROPERTIES FOR TIME VARYING MAPS

  • Sarkooh, Javad Nazarian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.481-506
    • /
    • 2022
  • This paper is concerned with the study of various notions of shadowing of dynamical systems induced by a sequence of maps, so-called time varying maps, on a metric space. We define and study the shadowing, h-shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing properties of these dynamical systems. We show that h-shadowing, limit shadowing and s-limit shadowing properties are conjugacy invariant. Also, we investigate the relationships between these notions of shadowing for time varying maps and examine the role that expansivity plays in shadowing properties of such dynamical systems. Specially, we prove some results linking s-limit shadowing property to limit shadowing property, and h-shadowing property to s-limit shadowing and limit shadowing properties. Moreover, under the assumption of expansivity, we show that the shadowing property implies the h-shadowing, s-limit shadowing and limit shadowing properties. Finally, it is proved that the uniformly contracting and uniformly expanding time varying maps exhibit the shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing properties.

PERIODIC SURFACE HOMEOMORPHISMS AND CONTACT STRUCTURES

  • Dheeraj Kulkarni;Kashyap Rajeevsarathy;Kuldeep Saha
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.1-28
    • /
    • 2024
  • In this article, we associate a contact structure to the conjugacy class of a periodic surface homeomorphism, encoded by a combinatorial tuple of integers called a marked data set. In particular, we prove that infinite families of these data sets give rise to Stein fillable contact structures with associated monodromies that do not factor into products to positive Dehn twists. In addition to the above, we give explicit constructions of symplectic fillings for rational open books analogous to Mori's construction for honest open books. We also prove a sufficient condition for the Stein fillability of rational open books analogous to the positivity of monodromy for honest open books due to Giroux and Loi-Piergallini.

THE AUTOMORPHISM GROUP OF COMMUTING GRAPH OF A FINITE GROUP

  • Mirzargar, Mahsa;Pach, Peter P.;Ashrafi, A.R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1145-1153
    • /
    • 2014
  • Let G be a finite group and X be a union of conjugacy classes of G. Define C(G,X) to be the graph with vertex set X and $x,y{\in}X$ ($x{\neq}y$) joined by an edge whenever they commute. In the case that X = G, this graph is named commuting graph of G, denoted by ${\Delta}(G)$. The aim of this paper is to study the automorphism group of the commuting graph. It is proved that Aut(${\Delta}(G)$) is abelian if and only if ${\mid}G{\mid}{\leq}2$; ${\mid}Aut({\Delta}(G)){\mid}$ is of prime power if and only if ${\mid}G{\mid}{\leq}2$, and ${\mid}Aut({\Delta}(G)){\mid}$ is square-free if and only if ${\mid}G{\mid}{\leq}3$. Some new graphs that are useful in studying the automorphism group of ${\Delta}(G)$ are presented and their main properties are investigated.