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Abstract. Let K be an algebraically closed field of characteristic 0 and

let f be a non-fibered planar quadratic polynomial map of topological
degree 2 defined over K. We assume further that the meromorphic ex-

tension of f on the projective plane has the unique indeterminacy point.
We define the critical pod of f where f sends a critical point to another

critical point. By observing the behavior of f at the critical pod, we can

determine a good conjugate of f which shows its statue in GIT sense.

1. Introduction

In this article, we introduce the critical pods of planar quadratic polynomial
maps of topological degree 2. In complex and algebraic dynamics, a polyno-
mial automorphism, which is a map of topological degree 1, is one of popular
examples [1, 3–6]. In complex analysis, polynomial maps of small topological
degree are studied to generalize the results for polynomial automorphisms [7–9].
So we expect to generalized algebraic and geometric properties of polynomial
automorphisms [11,13].

LetK be an algebraically closed field of characteristic 0 and let f be a planar
quadratic polynomial map of topological degree 2 defined over K. When f is a
map of topological degree 2, the first observation should be made at the critical
points. Since topological degree is the number of preimages of a generic point,
we have a critical point where preimages overlap. If critical points appear one
after another, it is quite interesting.

Definition 1.1. Let f be a planar polynomial map of topological degree 2.
We say that {P−1, P0, P1} is a critical pod of f if P0 = f(P−1), P1 = f(P0),
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and both P0 and P1 have exactly one preimage.

Q−2

""

Q1

  
P−2

// P−1
+3 P0

+3 P1
// P2

We can describe the critical pod with the dynamical Mordell-Lang con-
jecture. Xie proves that the dynamical Mordell-Lang conjecture for planar
polynomial maps when K = Q.

Theorem 1.2 ([16, Theorem 0.1]). Let f : A2 → A2 be a planar polynomial
map defined over Q, let C be an irreducible curve in A2 and let P be a point
in A2. Then the set

Df (P ;C) := {n ∈ N | fn(P ) ∈ C}

is a finite union of arithmetic progressions.

Can we use Xie’s result for critical points? If f is a planar quadratic poly-
nomial map of topological degree 2 and K = Q, the set of critical points of f is
a line L (Proposition 3.1) so that the set Df (P ;L) should be a finite union of
arithmetic progressions for any P . We ask further questions - can we find an
arithmetic progression with a common difference of 1 in Df (P ;L)? If we have
one, how long it can be? It is determined by a geometric property of f : we say
that f is fibered if f sends every line parallel to L to another line parallel to
L. We assume further that the meromorphic extension f of f on P2 has only
one indeterminacy point to show that the map f is not fibered if and only if
there is an arithmetic progression of length 2, with a common difference of 1,
in Df (P ;L) for some P . It guarantees the existence and the uniqueness of the
critical pod.

Theorem A (Theorem 3.3). Let f be a non-fibered planar quadratic poly-
nomial map of topological degree 2 defined over K. Assume further that the
meromorphic extension f of f on P2 has only one indeterminacy point. Then
f has the unique critical pod.

The points where a self map has good dynamical behavior are quite useful in
the study of dynamical systems. For example, periodic points of a polynomial
automorphism are equidistributed: the probability measures on the set of (sad-
dle) points of period n weakly converges to the invariant measure [2, 12]. The
conjugacy classes of quadratic Hénon maps are determined by information at
fixed points [11]. The critical pod is also useful to figure out interesting prop-
erties of the dynamical system. We define the determinant and the traces of f
by observing the Jacobian of f at critical pods to find when the critical pod is
a fixed point and when algebraic degree of m-th iterate fm of f is stable.
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Definition 1.3. Let f be a non-fibered planar quadratic polynomial map of
topological degree 2 defined over K. Assume further that the meromorphic
extension f of f on P2 has only one indeterminacy point. We define

T0 := trJf (P0), T1 := trJf (P1), and D := det Jf (P1),

where {P−1, P0, P1} is the critical pod of f .

Theorem B (Propositions 4.3, 5.3 and 5.4, Corollaries 4.5 and 5.9). Let f be
a non-fibered planar quadratic polynomial map of topological degree 2 defined
over K. Assume further that the meromorphic extension f of f on P2 has
only one indeterminacy point. Let {P−1, P0, P1} be the critical pod of f , let fm

be the m-th iterate of f and let deg(fm) be algebraic degree of fm. Then the
following hold:

(a) P0 is a fixed point of f (i.e., P−1 = P0 = P1) if and only if D = 0,
(b) P0 is the unique fixed point if and only if D = 0 and T0 = 1,
(c) deg(fm) ̸= 2m for some m ∈ N if and only if tr Jf (P ) = T1 for all

P ∈ A2, and
(d) If deg(fm) = 2m for all m ∈ N, the P0 is a fixed point if and only if

T0 = T1.

For reader’s convenience, we say that f is algebraically stable if deg(fm) =
2m for all m ∈ N and algebraically non-stable otherwise. We will say f is
singular if D = 0. It it not only because such f is determined by D = 0, but
also we can observe some singularity. When we consider a family ft of non-
fibered planar quadratic maps of topological degree 2, we have three sections
Pt,−1, Pt,0, Pt,1 which form the ‘section’ of the critical pod. These three sections
meet at a point when ft is singular.

Also, we use the critical pod to find the conjugacy class of f . By listing coef-
ficients, we can correspond quadratic rational maps to points in the projective
space to define the parameter space of quadratic rational maps:

R2 :=
{
[A200; · · · ;B200; · · · ;C200; · · · ] ∈ P17

∣∣∣[∑
AijkX

iY jZk;
∑

BijkX
iY jZk;

∑
CijkX

iY jZk
]
: quadratic rational map

}
.

When σ ∈ PGL3(K), two rational maps g and its conjugate gσ = σ ◦ g ◦ σ−1

have the same dynamical properties.

P
g //

σ

��

g(P )
g //

σ

��

g2(P )

σ

��

g // · · ·

σ(P )
gσ
// gσ(σ(P ))

gσ
// (gσ)2(σ(P ))

gσ
// · · ·

So we consider PGL3(K)-congujacy-action on R2 and construct the moduli
space of quadratic rational maps by collecting the conjugacy classes of g. The
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moduli space of quadratic rational map is well-defined as the categorical quo-
tient. But we want the moduli space to be a good geometric object to study
dynamical properties of a family of certain maps. The geometric invariant
theory (GIT) shows that which point in the categorical quotient can be distin-
guished from other point geometrically. We say a point is stable if a point is
closed, semistable if the closure of the point does not contain the zero element,
and unstable otherwise. We use D, T0 and T1 to find a simple representative
of f , which shows that f is semistable or unstable. Thought we use the fixed
points for Hénon maps in previous work [11], we use the critical pod in this
paper because it is easily determined by L ∩ f(L) so that we can describe the
condition to get the unique critical pod. Moreover, points in the critical pod
has natural order while the set of fixed points doesn’t have one.

Theorem C (Theorems 4.4, 5.6, and 5.8). Let f be a non-fibered planar qua-
dratic polynomial map of topological degree 2 defined over K. Assume further
that the meromorphic extension f of f on P2 has only one indeterminacy point.
Then

f ∼

{(
ℓ(x, y), 12y

2 + ℓ(x, y)
)

if f : algebraically stable,

(T0x− y +D, 12x
2) if f : algebraically non-stable,

where

ℓ(x, y) =


D

T1−T0
x+

(
T0 − D

T1−T0

)
y + (T1 − T0) if D ̸= 0,

det Jf (P )
trJf (P )−T0

x+
(
T0 − det Jf (P )

trJf (P )−T0

)
y + (T1 − T0) if D = 0 and P any point with det Jf (P ) ̸= 0.

Moreover, f is semistable if it is algebraically stable and unstable if it is alge-
braically non-stable in GIT sense.

The rest of paper is organized as follows. In Section 2, we review some points
with geometric properties of f : the indeterminacy points and the infinity fixed
points. In Section 3, we prove that the critical pod exists if and only if f is
not fibered, and we introduce some properties of the critical pods. In Sections
4 and 5, we use them to find a good representative of each conjugacy class
which shows its own status in GIT sense. Unless otherwise stated, we let K
be an algebraically closed field of characteristic 0, let λf be topological degree
of f and let f : A2 → A2 be a planar quadratic polynomial map of topological
degree 2 defined over K. Also, we let f be the meromorphic extension of f on
P2 with the homogenizing variable Z and let H = P2 \ A2 be the hyperplane
of infinity defined by the equation Z = 0.

2. The indeterminacy points and the infinity fixed points

In this section, we observe two kinds of points with geometric properties;
the indeterminacy point and the infinity fixed point. Since the meromorphic
extension f is of algebraic degree 2 and of topological degree 2, it is not an
endomorphism on P2 and hence f has the indeterminacy locus I(f), where we
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cannot continuously extend f . Since the dimension of the I(f) is 0 when f is
a planar rational map, I(f) consists of finitely many points.

We define the infinity fixed point by observing geometric description of al-
gebraic stability of f with the indeterminacy point.

Lemma 2.1 ([15] Lemma 7.8, planar version). Let ϕ, ψ : A2 → A2 be polyno-
mial maps. Then

deg(ϕ ◦ ψ) < deg ϕ · degψ if and only if ψ(H \ I(ψ)) ⊂ I(ϕ),

where ϕ, ψ are meromorphic extensions of ϕ and ψ on P2, and H = P2 \A2 is
the hyperplane of infinity.

Corollary 2.2. A planar polynomial map f is algebraically non-stable if and
only if f(H \ I(f)) ⊂ I(f).

Corollary 2.2 guarantees that f(H \ I(f)) should be of dimension 0 when
f is algebraically non-stable. Furthermore, we can resolve indeterminacy of f
[10]: we can find a blowup variety V of P2 along I(f) where f can be extended

to a continuous map f̃ : V → P2. Hence the closure of H \ I(f) should be
mapped to a connected set. Therefore, every point on H \ I(f) is mapped to
a point in H. We will see that it also happens when f is algebraically stable.

Proposition 2.3. Let f be a planar quadratic polynomial map of topological
degree 2. Then f is of the form

(aQ(x, y) + L1(x, y), bQ(x, y) + L2(x, y)),

where Q(x, y) is a quadratic form, a, b ∈ K are constants and L1, L2 ∈ K[x, y]
are linear polynomials.

Proof. Since f is a planar polynomial map of degree 2, it is of the form

(Q1(x, y) + l1(x, y), Q2(x, y) + l2(x, y)),

where Qi’s are quadratic forms and li’s are linear polynomials. Consider the
meromorphic extension of f on P2;

f [X;Y ;Z] = [Q1(X,Y ) + ZL1(X,Y, Z); Q2(X,Y ) + ZL2(X,Y, Z); Z
2].

Let (γ, δ) be a generic point in A2. Then its preimage in P2 is the intersections
of planar curves C1 and C2, defined by

F1(X,Y, Z) = Q1(X,Y ) + Z(l1(X,Y, Z)− γZ) = 0

and

F2(X,Y, Z) = Q2(X,Y ) + Z(l2(X,Y, Z)− δZ) = 0,

respectively. If F1 and F2 have a common factor, then we get infinitely many
preimages of a generic point (γ, δ), which contradicts to λf = 2. So, F1 and F2

should be coprime. So, by Bézout’s theorem, the number of intersection points
of C1 and C2 is 4. Since we only have two intersection points in A2, we should
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have another two intersection points in H = P2 \ A2, which means that there
are two intersection points with Z = 0. So, we get

Q1(X,Y ) = a(β1X − α1Y )(β2X − α2Y )

and

Q2(X,Y ) = b(β1X − α1Y )(β2X − α2Y )

for some a, b ∈ K. □

Definition 2.4. Let f be a planar quadratic polynomial map of topological
degree 2, of the form in Proposition 2.3. We call

f(H \ I(f)) = [a; b; 0]

the infinity fixed point of f .

Note that f is not defined at the infinity fixed point if f is algebraically
non-stable. But, f is constant on H \ I(f) so we can extend f |H\I(f) to a

continuous function on H which fixes the infinity fixed point.
By taking a proper conjugate of f , we can locate the infinity fixed point at

[0; 1; 0] and hence we may assume that

f [X;Y ;Z] = [Z(a1X + b1Y + c1Z);Q(X,Y ) + Z(a2X + b2Y + c2Z);Z
2]

and

(1) f(x, y) = (a1x+ b1y + c1, Q(x, y) + a2x+ b2y + c2),

where Q is a quadratic form. We can find that a solution (α, β) of Q(x, y) = 0
corresponds to an indeterminacy point [α;β; 0]. In particular, Q(x, y) becomes
a complete square if f has exactly one indeterminacy point.

3. The critical pods

In this section, we study how to find the critical point and the critical pod,
and we discuss why we consider ‘non-fibered’ maps. We start with the obser-
vation where the preimages overlap.

Proposition 3.1. Suppose that f is a planar quadratic polynomial map of
topological degree 2. Then the zero locus of the determinant of Jacobian of f
is a line.

Proof. If f is of the form (1);

f(x, y) = (a1x+ b1y + c1, Q(x, y) + a2x+ b2y + c2),

then the determinant of the Jacobian of f is a linear polynomial;

det Jf =

∣∣∣∣ a1 b1
Qx + a2 Qy + b2

∣∣∣∣ = a1Qy − b1Qx + (a1b2 − a2b1).
□

For convenience, we call the zero locus of det Jf the critical line of f . The map
f has interesting geometric behavior on its own critical line.
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Proposition 3.2. Let f be a planar quadratic polynomial map of topological
degree 2, and let L be the critical line of f . Then P ∈ L if and only if P is the
only preimage of f(P );

P ∈ L ⇔ f−1(f({P})) = {P}.

Proof. Let f = (f1, f2) be of the form (1), let P = (x0, y0) and let f(P ) =
(γ, δ). The preimages of f(P ) should satisfy the following system of equations;{

a1x+ b1y + c1 = γ,

f2(x, y) = δ.

We may assume that not both a1, b1 are zero: otherwise, λf = ∞. If a1 ̸= 0, we
can see that y0 should be the critical point of g if and only if y0 is the unique
solution of a quadratic equation

g(y) = f2

(
b1y+c1−γ

−a1
, y
)
− δ.

Since the equality
dg

dy
=

det Jf
a1

holds, we can conclude that y0 is the critical point if and only if P ∈ L. If
a1 = 0, then b1 ̸= 0 so that we use x instead of y to get the similar result. □

We say that a point P is wandering if the orbit Of (P ) = {P, f(P ), . . .} of
a P is Zariski dense in A2. If P ∈ L is wandering, the probability of f(P ) ∈ L
is 0. However, unless f is fibered, we can guarantee the existence and the
uniqueness of the critical pod.

Theorem 3.3. Let f be a non-fibered planar quadratic polynomial map of
topological degree 2 defined over K. Assume further that the meromorphic
extension f of f on P2 has only one indeterminacy point. Then f has the
unique critical pod.

Proof. Since we assume that f has only one indeterminacy point, f should be
conjugate with

(a1x+ b1y + c1, (βx− αy)2 + a2x+ b2y + c2).

Note that a1α + b1β ̸= 0; otherwise λf = 1, which is a contradiction. The
directional vector of the critical line L of f is (α, β) so that the value of (βx−
αy)2 should be constant on L. So f |L forms an affine map and hence f(L)
should be a line.

Suppose that L and f(L) are parallel. Since the directional vector of f(L)
is

(α, β)

(
a1 a2
b1 b2

)
,

we get

(a1α+ b1β)β = (a2α+ b2β)α.
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If L′ is any line parallel to L, then f(L′) is also parallel to f(L), which con-
tradicts that f is not fibered. Therefore, L and f(L) are not parallel so that
there exists the unique intersection point P0 in A2 which provides the critical
pod {P−1 = f−1(P0), P0, P1 = f(P0)}. □

Corollary 3.4. The indeterminacy point I and two points P−1, P0 are col-
linear.

Proof. We know that both P0 and P−1 are on L. Also, we can see that the
directional vector of the critical line L is (α, β) so that L meets with H at
I = [α;β; 0]. □

We want to describe f with geometric invariants at P−1, P0 and P1. If fσ

is a conjugate of f by σ ∈ GL2(K), then we get

Jfσ (σ(P )) = Jσ(f(P )) · Jf (P ) · Jσ−1(σ(P ))

by the chain rule. So we can say the determinant and trace of the Jacobian of
f at a point are geometric information of the dynamical system (f,A2) because
they only depend on the conjugacy class of f ;

det Jf (P ) = detJfσ (σ(P )) and trJf (P ) = trJfσ (σ(P )).

If {P−1, P0, P1} is the critical pod of f , then {σ(P−1), σ(P0), σ(P1)} is the
critical pod of fσ. Therefore, D, T0, T1 are invariants of the conjugacy class
of f .

Note that we only have to consider three invariants D, T0, T1 of the conju-
gacy class of f introduced in Definition 1.3. Since both P−1 and P0 are on the
critical line, the determinant of Jf may not vanish only at P1. Moreover, we
will show that tr Jf (P−1) = T0 later.

4. Case I: f is algebraically non-stable

In this section, we will treat non-fibered planar quadratic polynomial maps
of topological degree 2 whose meromorphic extension f has the unique indeter-
minacy point, which are algebraically non-stable. By examining T1 and D, we
can find a good conjugate of f which reveals geometric information of f . We
start by examining where the indeterminacy point is.

Lemma 4.1. Let f be a planar quadratic polynomial map of topological de-
gree 2 which is algebraically non-stable. Assume further that f has the unique
indeterminacy point I. Then f is conjugate to a non-fibered one

g(x, y) = (ax+ by + c, x2 + kax+ kby + kc),

where b ∈ K is a non-zero constant.

Proof. Since we assume that f has only one indeterminacy point, we may
assume that f is conjugate to

(a1x+ b1y + c1, (βx− αy)2 + a2x+ b2y + c2).
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Since f is algebraically non-stable, Corollary 2.2 says

I = f(H \ I(f)) = [0; 1; 0]

and hence

(2) f(x, y) = (a1x+ b1y + c1, x
2 + a2x+ b2y + c2).

Moreover, λf = 2 guarantees b1 ̸= 0 : if not,{
a1x+ c1 = γ,

x2 + a2x+ b2y + c2 = δ

has the unique solution.
Let L be the critical line of f . Since the parametric equation of L is

det Jf = 0 ⇔ x =
a1b2 − a2b1

2b1
and y = t,

the parametric equation of f(L) is

(3)


x = a1

a1b2 − a2b1
2b1

+ b1t+ c1,

y =

(
a1b2 − a2b1

2b1

)2

+ a2
a1b2 − a2b1

2b1
+ b2t+ c2

which satisfies

(4b1b2)x = (4b21)y +
{
(a1b2 − a2b1)

2 − 4b1(b1c2 − b2c1)
}
.

Since b1 ̸= 0, (3) guarantees that f(L) is not a vertical line and hence f is not
fibered: two lines L and f(L) properly intersect at

P0 =

(
a1b2 − a2b1

2b1
,
2b2(a1b2 − a2b1)− (a1b2 − a2b1)

2 + 4b1(b1c2 − b2c1)

4b21

)
.

Note that P0, P1 = f(P0), and P−1 = f−1(P0) form the critical pod of f . We
locate P0 at [0; 0; 1] to get the relations on the conjugate in (2);

a1b2 − a2b1 = 0, and b1c2 − b2c1 = 0

so that we may assume

f ∼ (a1x+ b1y + c1, x
2 + ka1x+ kb1y + kc1)

where k = b2/b1. □

Corollary 4.2. Three points I, P0, P1 are not collinear unless P0 is a fixed
point.

Proof. In the proof of Lemma 4.1, P1 = (c1, kc1) is on the line ⟨y = kx⟩ so
three points I, P0 and P1 are not on the same line unless P0 = P1. □

Lemma 4.1 provides a good conjugate of f enough to show the following.
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Proposition 4.3. Let f be a planar quadratic polynomial map of topological
degree 2 which is algebraically non-stable. Assume further that f has the unique
indeterminacy point. Then the following hold:

(a) tr Jf : A2 → K is a constant map, and
(b) The mid-point P0 of the critical pod is a fixed point if and only if D = 0.

Proof. We may assume that f is of the form obtained in Lemma 4.1. The
Jacobian of the conjugate f obtained in Lemma 4.1 is

Jf (x, y) =

[
a b

2x+ ka kb

]
,

where b is nonzero constant. So we get (a);

tr Jf (x, y) = a+ kb.

Also, the determinant of the Jacobian of f ,

det Jf (x, y) = −2bx

guarantees that D = 0 if and only if c1 = 0. So, P1 = (c1, kc1) = P0 if and
only if D = 0. □

To get the good conjugate in Lemma 4.1, we only locate two points at [0; 1; 0]
and [0; 0; 1]. So we can find a better conjugate by locating P1 at x-axis while
fixing [0; 1; 0] and [0; 0; 1].

Theorem 4.4. Let f be a planar quadratic polynomial map of topological de-
gree 2 which is algebraically non-stable. Assume further that f has the unique
indeterminacy point. Then we get

f ∼
(
T0x− y +D,

1

2
x2

)
.

Proof. We may assume that f is of the form obtained in Lemma 4.1. We can
check that σ ∈ PGL3(K) will fix [0; 1; 0] and [0; 0; 1] only if σ = [rX; sX +
tY ;Z]. Using σ = (−2bx, 2b2(y − kx)) where b is a nonzero constant, we get

fσ ∼
(
(a+ kb)x− y − 2bc,

1

2
x2

)
.

Since T0 = a + kb, D = −2bc, we get the desired result. Note that we get
P−1 = (0, D) and P1 = (D, 0). □

Corollary 4.5. P0 is the unique fixed point if and only if D = 0 and T0 = 1.

Proof. When D = 0, we have two fixed points, P0 and (1−T0, 2(1−T0)
2). □

We have another reason why we say the representative in Theorem 4.4 is a
good one; we can easily check GIT-stability of f . In such sense, this represen-
tative is the best conjugate of f .
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Corollary 4.6. Let f be a planar quadratic polynomial map of topological
degree 2 which is algebraically non-stable. Assume further that f has the unique
indeterminacy point I. Then f is unstable in GIT sense.

Proof. We apply the Hilbert-Mumford Criterion [14] to show f is unstable; we
will find a 1-parameter subgroup Lr,s(α) = {[αr;α−r+s;α−s] | r, s ∈ Z≥0} of

PGL3(K) which only gives positive weight µ(f, Lr,s) to f . The meromorphic
extension of f is of the form

[T0XZ − Y Z +DZ2;
1

2
X2;Z2],

we examine Table 1 to find that every exponent of α can be positive. For
example, s = 4, r = 1 gives

µ(f, L1,4) = min{1 + 2 · 4, 2 · 1, 4,−3 · 1 + 4, 4} = 1 > 0.

Therefore, f is unstable. □

Table 1. Exponents of α in algebraically non-stable f
Lr,s

X2 Y 2 Z2 XY Y Z XZ

x-coordinate of f
Lr,s − − r + 2s − 2r s

y-coordinate of f
Lr,s −3r + s − − − − −

z-coordinate of f
Lr,s − − s − − −

5. Case II: f is algebraically stable

In this section, we will treat a non-fibered planar quadratic polynomial map
of topological degree 2 whose meromorphic extension f has the unique inde-
terminacy point which is algebraically stable and has one indeterminacy point.
By examining T0, T1 and D, we can find a good conjugate of f which reveals
geometric information of f . We start by locating the indeterminacy point at a
good place.

Lemma 5.1. Let f be a planar non-fibered planar quadratic polynomial map
of topological degree 2 which is algebraically stable. Assume further that f has
the unique indeterminacy point I. Then f is conjugate to

g(x, y) = (ax+ by + c, y2 + kax+ kby + kc).

Proof. Since we assume that f has only one indeterminacy point, we may
assume that f is of the form

(a1x+ b1y + c1, (βx− αy)2 + a2x+ b2y + c2).
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Since f is algebraically stable, I must be different from f(H \ I(f)) by Corol-
lary 2.2. We locate I and f(H \ I(f)) at [1; 0; 0] and [0; 1; 0] respectively to get
a conjugate of the form

(4) (a1x+ b1y + c1, y
2 + a2x+ b2y + c2).

Moreover, λf = 2 and non-fibered condition guarantee a1a2 ̸= 0: a1 = 0 only
if λf = 1 and a2 = 0 only if f is fibered.

Let L be the critical line of f . Since the parametric equation of L is

det Jf = 0 ⇔ x = t, y = −a1b2 − a2b1
2a1

,

the parametric equation of f(L) is
x = a1t− b1

a1b2 − a2b1
2a1

+ c1,

y =

(
−a1b2 − a2b1

2a1

)2

+ a2t− b2
a1b2 − a2b1

2a1
+ c2

which satisfies

(4a21)y = (4a1a2)x− {(a1b2 − a2b1)
2 − 4a1(a1c2 − a2c1)}.

Note that P0, P1 = f(P0), and P−1 = f−1(P0) form the critical pod of f . We
locate P0 at [0; 0; 1] to get the relations on the conjugate in (4);

a1b2 − a2b1 = 0, and a1c2 − a2c1 = 0

so that we may assume

f ∼ (a1x+ b1y + c1, y
2 + ka1x+ kb1y + kc1),

where k = a2/a1. □

Corollary 5.2. If P0 is not a fixed point, then I, P0, P1 are not colinear. Also,
f(H \ I(f)), P0, P1 are not colinear, either.

Proof. In the proof of Lemma 5.1, P1 = (c1, kc1) is on the line ⟨y = kx⟩. Since
k ̸= 0, three points I, P0 and P1 are not on the same line unless P0 = P1. Also,
k ̸= ∞, three points f(H \ I(f)), P0 and P1 are not on the same line unless
P0 = P1. □

Lemma 5.1 provides a good conjugate of f enough to show the following.

Proposition 5.3. Let f be a non-fibered planar quadratic polynomial map of
topological degree 2 which is algebraically stable. Assume further that f has the
unique indeterminacy point. Then the following hold:

(a) tr Jf : A2 → K is not a constant map.
(b) The mid-point P0 of the critical pod is a fixed point if and only if D = 0.
(c) det Jf (P ) ̸= 0 if and only if tr Jf (P ) ̸= T0.
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Proof. We may assume that f is of the form in Lemma 5.1. The Jacobian of f
is

Jf =

[
a b
ka 2y + kb

]
,

where a is a nonzero constant. So we get (a);

tr Jf (x, y) = 2y + a+ kb.

Also, the determinant of the Jocobian of f ,

det Jf (x, y) = 2ay

guarantees that D = 0 if and only if c1 = 0. So, P1 = (c1, kc1) = P0 if and
only if D = 0. □

Proposition 5.4. Let f be a non-fibered planar quadratic polynomial map of
topological degree 2 which is algebraically stable. Assume further that f has the
unique indeterminacy point. Then the following hold:

(1) f is singular if and only if the critical pod consists of a single point.
(2) f is singular if and only if T0 = T1.

Now we take three points, I, f(H \ I(f)) and P0. If we can find another
point P such that I, f(H \ I(f)), P0 and P form points in general position, we
can find the best conjugate of f by locating them at nice spots. Such point P
should satisfy the following property.

Proposition 5.5. The value

det Jf (P )

tr Jf (P )− T0

is a constant for all P ̸∈ L.

Proof. We consider the conjugate of f found in Lemma 5.1,

g(x, y) = (ax+ by + c, y2 + kax+ kby + kc).

The Jacobian of g is of the form

Jg =

[
a b
ka 2y + kb

]
so we get

det Jg = 2ay and trJg = 2y + a+ kb.

Since y-coordinate of P /∈ L is nonzero, we get

det Jg(P )

tr Jg(P )− T0
= a

for all P /∈ L. Since the determinant and the trace are preserved by the
conjugacy action, the above values are same for f . □
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5.1. If f is not singular

If P0 ̸= P1, then P1 can be the point in Proposition 5.5. So, the conjugate
we found in Lemma 5.1 has coefficients

a =
D

T1 − T0
, kb = T0 −

D

T1 − T0
.

We will find the best conjugate of f by locating P1 at a good spot.

Theorem 5.6. Let f be a non-fibered planar quadratic polynomial map of
topological degree 2 which is algebraically stable. Assume further that f has the
unique indeterminacy point I and that D ̸= 0. Then we get a conjugate of f ,

h1(x, y) =

(
px+ qy + r,

1

2
y2 + px+ qy + r

)
,

where

p =
D

T1 − T0
, q = T0 − p, and r = T1 − T0.

Proof. We consider the conjugate of f found in Lemma 5.1. Using σ =
[2kX; 2Y ;Z] which fixes f(H \ I(f)) = [0; 1; 0], I = [1; 0; 0] and P = [0; 0; 1],
we get

gσ =

(
ax+ kby + 2kc,

1

2
y2 + ax+ kby + 2kc

)
.

Since a = D
T1−T0

, kb = T0 − D
T1−T0

and T1 − T0 = 2kc, we get the desired
result. □

By observing the representative in Theorem 5.6, we can easily check GIT-
stability of f . In such sense, this representative is the simplest conjugate of
f .

Corollary 5.7. Let f be a non-fibered planar quadratic polynomial map of
topological degree 2 which is algebraically stable. Assume further that f has
the unique indeterminacy point I and that D ̸= 0. Then f is not stable but
semistable.

Proof. Since f is algebraically stable and is not fibered, f is at least semistable
[13, Theorem 4.1]. So we only have to apply the Hilbert-Mumford Crite-
rion [14] to show that f is not stable: we will find a 1-parameter subgroup
Lr,s(α) = {[αr;α−r+s;α−s] | r, s ∈ Z≥0} of PGL3(K) which only gives non-
negative weight to f . Since the meromorphic extension of f is of the form

[pXZ + qY Z + rZ2;
1

2
2Y 2 + pXZ + qY Z + rZ2;Z2],

we examine Table 2 to find µ(f, Lr, s) = 0 when r = s > 0. □
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Table 2. Exponent of α in algebraically stable and nonsin-

gular f
Lr,s

X2 Y 2 Z2 XY Y Z XZ

x-coordinate of f
Lr,s − − r + 2s − 2r s

y-coordinate of f
Lr,s − r − s −r + 3s − s −2r + 2s

z-coordinate of f
Lr,s − − s − − −

5.2. If f is singular

Theorem 5.8. Let f be a non-fibered planar quadratic polynomial map of
topological degree 2 which is algebraically stable. Assume further that f has the
unique indeterminacy point I and that D = 0. Then we get a conjugate of f ,

h0(x, y) = (px+ qy, y2 + px+ qy),

where

p =
det Jf (P )

tr Jf (P )− T0
, q = T0 − p,

and P is any point such that det Jf (P ) ̸= 0.

Proof. If f is singular, then f should be conjugate to

g(x, y) = (ax+ kby, y2 + ax+ kby).

Since P1 = (c1, c1) = (0, 0) = P0. In this subcase, we have D = 0 and
T0 = T1 = a + kb so that we do not have enough information. However, if we
pick a point P such that det Jf (P ) ̸= 0. We can calculate the constant

det Jf (P )

tr Jf (P )− T0
.

□

Corollary 5.9. Let f be a non-fibered planar quadratic polynomial map of
topological degree 2 which is algebraically stable. Assume further that f has the
unique indeterminacy point I and that D = 0. Then P0 is the unique fixed
point if and only if T0 = T1 = 1.

Proof. The y-coordinate of the other fixed point of f is 1 + q
p−1 . So, it should

be 0 if and only if 1 − p = q = T0 − p. Since f is singular, it is equivalent to
T0 = T1 = 1. □

Corollary 5.10. Let f be a non-fibered planar quadratic polynomial map of
topological degree 2 which is algebraically stable. Assume further that f has
the unique indeterminacy point I and that D = 0. Then f is not stable but
semistable.
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Proof. With the same reason with the nonsingular case, we only have to show
that f is not stable using the Hilbert-Mumford Criterion [14]. Since the mero-
morphic extension of f is of the form

[pXZ + qY Z;
1

2
Y 2 + pXZ + qY Z;Z2],

we use the same 1-parameter subgroup Lr,s(α) = {[αr;α−r+s;α−s] | r, s ∈ Z≥0}
of PGL3(K) to get µ(f, Lr, s) = 0 when r = s > 0. □

Table 3. Exponent of α in algebraically stable and singular

f
Lr,s

X2 Y 2 Z2 XY Y Z XZ

x-coordinate of f
Lr,s − − − − 2r s

y-coordinate of f
Lr,s − r − s − − s −2r + 2s

z-coordinate of f
Lr,s − − s − − −
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