DOI QR코드

DOI QR Code

VARIOUS SHADOWING PROPERTIES FOR TIME VARYING MAPS

  • Received : 2021.05.02
  • Accepted : 2021.11.08
  • Published : 2022.03.31

Abstract

This paper is concerned with the study of various notions of shadowing of dynamical systems induced by a sequence of maps, so-called time varying maps, on a metric space. We define and study the shadowing, h-shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing properties of these dynamical systems. We show that h-shadowing, limit shadowing and s-limit shadowing properties are conjugacy invariant. Also, we investigate the relationships between these notions of shadowing for time varying maps and examine the role that expansivity plays in shadowing properties of such dynamical systems. Specially, we prove some results linking s-limit shadowing property to limit shadowing property, and h-shadowing property to s-limit shadowing and limit shadowing properties. Moreover, under the assumption of expansivity, we show that the shadowing property implies the h-shadowing, s-limit shadowing and limit shadowing properties. Finally, it is proved that the uniformly contracting and uniformly expanding time varying maps exhibit the shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing properties.

Keywords

Acknowledgement

We would like to thank anonymous reviewer whose remarks improved the presentation of the paper.

References

  1. S. A. Ahmadi and M. R. Molaei, Exponential limit shadowing, Ann. Polon. Math. 108 (2013), no. 1, 1-10. https://doi.org/10.4064/ap108-1-1
  2. L. Barreira and C. Valls, Stability of nonautonomous differential equations, Lecture Notes in Mathematics, 1926, Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-74775-8
  3. A. D. Barwell, C. Good, and P. Oprocha, Shadowing and expansivity in subspaces, Fund. Math. 219 (2012), no. 3, 223-243. https://doi.org/10.4064/fm219-3-2
  4. J. S. Canovas, On ω-limit sets of non-autonomous discrete systems, J. Difference Equ. Appl. 12 (2006), no. 1, 95-100. https://doi.org/10.1080/10236190500424274
  5. J. S. Canovas, Li-Yorke chaos in a class of nonautonomous discrete systems, J. Difference Equ. Appl. 17 (2011), no. 4, 479-486. https://doi.org/10.1080/10236190903049025
  6. B. Carvalho and D. Kwietniak, On homeomorphisms with the two-sided limit shadowing property, J. Math. Anal. Appl. 420 (2014), no. 1, 801-813. https://doi.org/10.1016/j.jmaa.2014.06.011
  7. A. Castro, F. Rodrigues, and P. Varandas, Leafwise shadowing property for partially hyperbolic diffeomorphisms, Dyn. Syst. 35 (2020), no. 2, 306-314. https://doi.org/10.1080/14689367.2019.1667958
  8. R. L. Devaney, An introduction to chaotic dynamical systems, second edition, Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989.
  9. M. Fatehi Nia and S. A. Ahmadi, Various shadowing properties for parameterized iterated function systems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 1, 145-154.
  10. F. H. Ghane and J. Nazarian Sarkooh, On topological entropy and topological pressure of non-autonomous iterated function systems, J. Korean Math. Soc. 56 (2019), no. 6, 1561-1597. https://doi.org/10.4134/JKMS.j180788
  11. V. Glavan and V. Gutu, Shadowing in parameterized IFS, Fixed Point Theory 7 (2006), no. 2, 263-274.
  12. X. Huang, X. Wen, and F. Zeng, Topological pressure of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory 8 (2008), no. 1, 43-48.
  13. C. Kawan, Metric entropy of nonautonomous dynamical systems, Nonauton. Dyn. Syst. 1 (2014), no. 1, 26-52. https://doi.org/10.2478/msds-2013-0003
  14. C. Kawan, Expanding and expansive time-dependent dynamics, Nonlinearity 28 (2015), no. 3, 669-695. https://doi.org/10.1088/0951-7715/28/3/669
  15. C. Kawan and Y. Latushkin, Some results on the entropy of non-autonomous dynamical systems, Dyn. Syst. 31 (2016), no. 3, 251-279. https://doi.org/10.1080/14689367.2015.1111299
  16. R. Kempf, On Ω-limit sets of discrete-time dynamical systems, J. Difference Equ. Appl. 8 (2002), no. 12, 1121-1131. https://doi.org/10.1080/10236190290029024
  17. P. E. Kloeden and M. Rasmussen, Nonautonomous dynamical systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011. https://doi.org/10.1090/surv/176
  18. S. Kolyada and Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-233.
  19. S. Kolyada, Snoha, and S. Trofimchuk, On minimality of nonautonomous dynamical systems, Nonlinear Oscil. (N. Y.) 7 (2004), no. 1, 83-89; translated from Neliniini Koliv. 7 (2004), no. 1, 86-92. https://doi.org/10.1023/B:NONO.0000041798.79176.94
  20. W. Krabs, Stability and controllability in non-autonomous time-discrete dynamical systems, J. Difference Equ. Appl. 8 (2002), no. 12, 1107-1118. https://doi.org/10.1080/1023619021000053971
  21. M. Lee, Volume-preserving diffeomorphisms with various limit shadowing, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 25 (2015), no. 2, 1550018, 8 pp. https://doi.org/10.1142/S0218127415500182
  22. L. Liu and B. Chen, On ω-limit sets and attraction of non-autonomous discrete dynamical systems, J. Korean Math. Soc. 49 (2012), no. 4, 703-713. https://doi.org/10.4134/JKMS.2012.49.4.703
  23. R. Memarbashi and H. Rasuli, Notes on the dynamics of nonautonomous discrete dynamical systems, J. Adv. Res. Dyn. Control Syst. 6 (2014), no. 2, 8-17.
  24. J. Nazarian Sarkooh and F. H. Ghane, Specification and thermodynamic properties of topological time-dependent dynamical systems, Qual. Theory Dyn. Syst. 18 (2019), no. 3, 1161-1190. https://doi.org/10.1007/s12346-019-00331-x
  25. P. Oprocha and P. Wilczynski, Chaos in nonautonomous dynamical systems, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 17 (2009), no. 3, 209-221.
  26. W. Ott, M. Stenlund, and L.-S. Young, Memory loss for time-dependent dynamical systems, Math. Res. Lett. 16 (2009), no. 3, 463-475. https://doi.org/10.4310/MRL.2009.v16.n3.a7
  27. F. Rindler, Calculus of Variations, Universitext, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-77637-8
  28. K. Sakai, Various shadowing properties for positively expansive maps, Topology Appl. 131 (2003), no. 1, 15-31. https://doi.org/10.1016/S0166-8641(02)00260-2
  29. Y. Shi and G. Chen, Chaos of time-varying discrete dynamical systems, J. Difference Equ. Appl. 15 (2009), no. 5, 429-449. https://doi.org/10.1080/10236190802020879
  30. D. Thakkar and R. Das, Topological stability of a sequence of maps on a compact metric space, Bull. Math. Sci. 4 (2014), no. 1, 99-111. https://doi.org/10.1007/s13373-013-0045-z
  31. C. Tian and G. Chen, Chaos of a sequence of maps in a metric space, Chaos Solitons Fractals 28 (2006), no. 4, 1067-1075. https://doi.org/10.1016/j.chaos.2005.08.127