• Title/Summary/Keyword: Confocal fluorescent

Search Result 79, Processing Time 0.033 seconds

Analysis of an acid-responsive element in a promoter of laccase gene in the inky cap, Coprinellus congregatus (Coprinellus congregatus의 laccase 유전자 프로모터의 산성반응인자 분석)

  • Kim, Su Yeon;Nguyen, Linh;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.249-253
    • /
    • 2016
  • The inky cap, Coprinellus congregatus, produces several laccase isozymes during its life cycle: both hyphal tip laccase and sclerotial laccase are involved in the fungal development. When this fungus was transferred to an acid liquid medium (pH 4.0-4.5), a new laccase was synthesized and secreted into the culture supernatant. In order to examine its regulation by external pH, green fluorescent protein gene was ligated at the downstream of the promoters having different lengths. These expression vectors having different promoter lengths were inserted into the fungal transformation vector, pBARGEM7-1. These expression vectors were introduced to the mating type a1 and a2 monokaryons, and the transformants were selected by the phosphinothricin resistance. Transformant a1 (a1TF) and transformant a2 (a2TF) were mated with each other to generate homozygotic dikaryon transformants. All these transformants were grown in neutral liquid medium for 5 days, and then the whole cell homogenates were transferred to the acidic liquid medium (pH 4.1). After 36 h incubation at $25^{\circ}C$, cells were harvested for the analysis of GFP expression. GFP expression was detected in the transformant having full-length promoter (2.0 kb), but other transformants having shorter length promoter (shorter than 1.29 kb) failed to show the fluorescence. Therefore, the acid-responsive element in the laccase promoter should be localized between -2.0 kb ~ -1.29 kb region.

Microcontact Printing of Biotin for Selective Immobilization of Streptavidin-fused Proteins and SPR Analysis

  • Lee, Sang-Yup;Park, Jong-Pil;Lee, Seok-Jae;Park, Tae-Jung;Lee, Kyung-Bok;Park, Insung S.;Kim, Min-Gon;Chung, Bong-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • In this study, a simple procedure is described for patterning biotin on a glass substrate and then selectively immobilizing proteins of interest onto the biotin-patterned surface. Microcontact printing (CP) was used to generate the micropattern of biotin and to demonstrate the selective immobilization of proteins by using enhanced green fluorescent protein (EGFP) as a model protein, of which the C-terminus was fused to a core streptavidin (cSA) gene of Streptomyces avidinii. Confocal fluorescence microscopy was used to visualize the pattern of the immobilized protein (EGFP-cSA), and surface plasmon resonance was used to characterize biological activity of the immobilized EGFP-cSA. The results suggest that this strategy, which consists of a combination of $\mu$CP and cSA-fused proteins. is an effective way for fabricating biologically active substrates that are suitable for a wide variety of applications. one such being the use in protein-protein assays.

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Sperm Injection into Maturing and Activated Porcine Oocytes

  • Kim, Bong-Ki;Lee, Yun-Jung;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.41-41
    • /
    • 2001
  • Chromatin configuration and microtubule assembly were determined in porcine maturing and activated oocytes following intracytoplasmic sperm injection. Microtubule localization was confirmed using a mouse monoclonal antibody to $\alpha$-tubulin and detected using a fluorescent labeled goat anti-mouse secondary antibody. DNA was stained with propidium iodide. The image of microtubules and chromatin was captured using laser scanning confocal microscope. In germinal vesicle stage oocyte, sperm chromatin remained condensation and sperm derived microtubules were not observed at 8 to 12 h after sperm injection. At 24 h after injection, the sperm nucleus developed to the metaphase chromatin along the metaphase structure of female nucleus. In some metaphase I stage oocytes, sperm chromatin decondensed at 8 h to 12 h after injection, sperm aster was seen soon after sperm injection. At 24 h after sperm injection into metaphase I stage oocyte, male chromatin developed to the metaphase chromatin while female chromatin extruded first polar body and formed the metaphase chromatin. At 12 to 15 h after sperm injection into preactivated oocytes, condensed sperm nucleus was located in close proximity of female pronucleus. However, the condensed nucleus did not fuse with female pronucleus. In preactivated ocytes, injected sperm remained condensation, a few sperm organized small microtubular aster. Instead, maternal derived microtubules were organized near the female chromatin, which seem to move condensed male chromatin near to the female pronucleus. These results suggest that sperm nuclear decondensing activity and nucleation activity of centrosome during fertilization are cell cycle dependent. In absence of male functional centrosome, female origin centrosome takes over the role of microtubule nucleation for nuclear movement.

  • PDF

Foliar Colonization and Growth Promotion of Red Pepper (Capsicum annuum L.) by Methylobacterium oryzae CBMB20

  • Lee, Min-Kyoung;Chauhan, Puneet Singh;Yim, Woo-Jong;Lee, Gyeong-Ja;Kim, Young-Sang;Park, Kee-Woong;Sa, Tong-Min
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • In order to exploit Methylobacterium oryzae CBMB20 as of plant growth promoting agent, different inoculation methods have been evaluated. The present study aimed to evaluate soil, foliar, and soil+foliar inoculations of M. oryzae CBMB20 to improve the growth, fruit yield, and nutrient uptake of red pepper (Capsicum annuum L.) under greenhouse conditions. The population range of green fluorescent protein (gfp)-tagged M. oryzae CBMB20 using the three inoculation methods was 2.5-2.9 ${\log}_{10}$ cfu/g in the rhizosphere and 4.5-6.0 ${\log}_{10}$ cfu/g in the phyllosphere of red pepper plants. Confocal laser scanning microscopy results confirmed the colonization of M. oryzae CBMB20 endophytically on leaf surface. Plant height, fruit dry weight, and total biomass were significantly higher ($p{\leq}0.05$) in all M. oryzae CBMB20 inoculation methods as compared to non-inoculated control. Furthermore, uptake of mineral nutrients such as N, P, K, Ca, and Mg in red pepper plants in all M. oryzae CBMB20 inoculation methods was higher than in non-inoculated control. Comparative results of inoculation methods clearly demonstrated that soil+foliar inoculation of M. oryzae CBMB20 lead to the highest biomass accumulation and nutrient uptake which may be due to its efficient colonization in the red pepper rhizosphere and phyllosphere.

Comparison of LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ Bacterial Viability Test and alamarBlue$^{(R)}$ Method for Enumeration of Live and Dead Bacteria for Oral Bacterial Species

  • Kim, Yeon-Hee;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.37 no.4
    • /
    • pp.197-201
    • /
    • 2012
  • LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ and alamarBlue$^{(R)}$ are fluorescent materials used for the enumeration of live and dead bacteria. LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ is generally used for confocal microscopy applications to differentiate live from dead bacteria in a biofilm or planktonic state. AlamarBlue$^{(R)}$ has also been used widely to assay live and dead bacteria in a planktonic state. Whilst these materials are successfully utilized in experiments to discriminate live from dead bacteria for several species of bacteria, the application of these techniques to oral bacteria is limited to the use of LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ in biofilm studies. In our present study, we assessed whether these two methods could enumerate live and dead oral bacterial species in a planktonic state. We tested the reagents on Streptococcus mutans, Streptococcus sobrinus, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Enterococcus faecalis and found that only LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ could differentiate live from dead cells for all five of these oral strains. AlamarBlue$^{(R)}$ was not effective in this regard for P. gingivalis or A. actinomycetemcomitans. In addition, the differentiation of live and dead bacterial cells by alamarBlue$^{(R)}$ could not be performed for concentrations lower than $2{\times}10^6$ cells/ml. Our data thus indicate that LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ is a more effective reagent for this analysis.

Interaction between the p75 neurotrophin receptor and a novel adaptor protein

  • Lee, Yun-Hee;Yu, Ji-Hee;Cho, Jung-Sun;Park, Han-Jeong;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2008
  • The neurotrophin plays an important role in the development, differentiation and survival of the nervous system in vertebrates. It exerts its cellular effects through two different receptors, the Trk receptor tyrosine kinase neurotrophin receptor and the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily. Trk and p75 neurotrophin receptors utilize specific target proteins to transmit signals into the cell. An ankyrin-rich membrane spanning protein (ARMS) was identified as a new p75 interacting protein and serves as a novel downstream target of p75 neurotrophin receptor. We sought to delineate the interaction between p75 and ARMS by deletion constructs of p75 and green fluorescent protein (GFP)-tagged ARMS. We examined the interaction between these two proteins after overexpressing them in HEK-293 cells. Using both Western blot analysis and immunocytochemistry followed by confocal laser scanning microscopy, we found out that the intracellular domain of the p75 neurotrophin receptor was important for the interaction with ARMS. The results from this study suggest that ARMS may play an important role for mediating the signals from p75 neurotrophin receptor into the cell.

Spatial and Temporal Distribution of a Biocontrol Bacterium Bacillus licheniformis N1 on the Strawberry Plants

  • Kong, Hyun-Gi;Lee, Hyoung-Ju;Bae, Ju-Young;Kim, Nam-Hee;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.238-244
    • /
    • 2010
  • Spatial and temporal distribution of Bacillus licheniformis N1 was investigated over time on the leaves, petioles and crowns of the strawberry plants. Bacterial population on the strawberry plants was quantified over time by selective plating. Bacterial population of N1 containing a plasmid pWH43G carrying green fluorescent protein (GFP) declined relatively faster on the plant surface as compared to the Strain N1 itself. However, this result was found to be enough to utilize the strain to visualize bacterial colonization on the plant surface. When B. licheniformis N1 was treated together with Silwet L-77 at 0.03%, the bacterial population on plant surface persisted for up to 7 days. B. licheniformis N1 (pWH43G) containing Silwet L-77 was applied on the strawberry plants and the GFP expressing bacteria were visualized by confocal laser scanning microscopy. Bacterial persistence was also investigated in a growth chamber and in a plastic house after N1 bioformulation treatment on the strawberry plant. The Strain N1 colonized three different tissues well and persisted over 3 to 5 days on the strawberry plants. They formed bacterial aggregates on plant surfaces for at least 3 days, resulting in a biofilm to resist fluctuating plant surface environment. However, the bacterial persistence dramatically declined after 7 days in all tested tissues in a plastic house. This study suggest that B. licheniformis N1 colonizes the strawberry plant surface and persists for a long time in a controlled growth chamber, while it can not persist over 7 days on the plant surface in a plastic house.

Characterization of the Surface Contribution to Fluorescence Correlation Spectroscopy Measurements

  • Chowdhury, Salina A.;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.583-589
    • /
    • 2011
  • Fluorescence correlation spectroscopy (FCS) is a sophisticated and an accurate analytical technique used to study the diffusion of molecules in a solution at the single-molecule level. FCS is strongly affected by many factors such as the stability of the excitation power, photochemical processes, mismatch between the refractive indices, and variations in the cover glass thickness. We have studied FCS near the surface of a cover glass by using rhodamine 123 as a fluorescent probe and have observed that the surface has a strong influence on the measurements. The temporal autocorrelation of FCS decays with two characteristic times when the confocal detection volume is positioned near the surface of the cover glass. As the position of the detection volume is moved away from the surface, the FCS autocorrelation becomes one-component decaying; the characteristic time of the decay is the same as the faster-decaying component in the FCS autocorrelation near the surface. This observation suggests that the faster component can be attributed to the free diffusion of the probe molecules in the solution, while the slow component has its origin from the interaction between the probe molecules and the surface. We have characterized the surface contribution to the FCS measurements near the surface by changing the position of the detection volume relative to the surface. The influence of the surface on the diffusion of the probe molecules was monitored by changing the chemical properties of the surface. The surface contribution to the temporal autocorrelation of the FCS strongly depends on the chemical nature of the surface. The hydrophobicity of the surface is a major factor determining the surface influence on the free diffusion of the probe molecules near the surface.

Phosphate Number and Acyl Chain Length Determine the Subcellular Location and Lateral Mobility of Phosphoinositides

  • Cho, Hana;Kim, Yeon A;Ho, Won-Kyung
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.97-103
    • /
    • 2006
  • Phosphoinositides are critical regulators of ion channel and transporter activity. There are multiple isomers of biologically active phosphoinositides in the plasma membrane and the different lipid species are non-randomly distributed. However, the mechanism by which cells impose selectivity and directionality on lipid movements and so generate a non-random lipid distribution remains unclear. In the present study we investigated which structural elements of phosphoinositides are responsible for their subcellular location and movement. We incubated phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) with short or long acyl chains in CHO and HEK cells. We show that phosphate number and acyl chain length determine cellular location and translocation movement. In CHO cells, $PI(4,5)P_2$ with a long acyl chain was released into the cytosol easily because of a low partition coefficient whereas long chain PI was released more slowly because of a high partition coefficient. In HEK cells, the cellular location and translocation movement of PI were similar to those of PI in CHO cells, whereas those of $PI(4,5)P_2$ were different; some mechanism restricted the translocation movement of $PI(4,5)P_2$, and this is in good agreement with the extremely low lateral diffusion of $PI(4,5)P_2$. In contrast to the dependence on the number of phosphates of the phospholipid head group of long acyl chain analogs, short acyl chain phospholipids easily undergo translocation movement regardless of cell type and number of phosphates in the lipid headgroup.