• Title/Summary/Keyword: Configuration Accuracy

Search Result 378, Processing Time 0.028 seconds

GPS L5 Signal Tracking Scheme Using GPS L1 Signal Tracking Results (GPS L1 신호추적 결과를 이용한 GPS L5 신호추적 기법)

  • Joo, Inone;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.99-104
    • /
    • 2012
  • The United States will proceed with the effort to modernize the GPS system, and one of its main content is to provide L5 signal. L5 will be transmitted in a radio band reserved exclusively for aviation safety services. And, L5, in combination with L1, will improve the position accuracy via ionospheric correction and robustness via signal redundancy. However, The acquisition processing time of L5 takes longer than that of L1 as the code length of L5 is 10 times longer than that of L1. To reduce this acquisition processing time, a higher number of correlators in the aquisition module should be used. However, there is a problem that this causes increase in the complexity of the correlator configuration and the computation power. So, in this paper, we propose L5 signal tracking scheme using tracking results in the GPS L1/L5 receiver. The proposed scheme could reduce the hardware complexity as the GPS L5 signal acquisition module is not needed, and provide fast and stable tracking of L5 signal by aiding L1 tracking results such as PRN, the code phase synchronization, and the Doppler frequency. The feasibility of the proposed scheme is demonstrated through simulation results.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

Evaluation of Split Tension Fatigue Test Method for Application in Concrete (콘크리트의 쪼갬인장 피로실험방법 제안 및 적용성 평가)

  • Kim Dong-Ho;Lee Joo-Hyung;Jeong Won-Kyong;Yun Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.27-35
    • /
    • 2004
  • Most of concrete fatigue tests currently used are flexural tension or compression methods to investigate the tensile or compressive properties, respectively. However, the concrete pavement or concrete slab is actually subjected to a combined stress condition such as biaxial or triaxial. The split tension test may result in similar stress condition to biaxial stress condition. The purposes of this study were to evaluate the split tension fatigue test method for application in concrete. These were done by a finite element analysis and experimental series. The results were as follows: The optimum configuration of split tension fatigue test was a cylinder of 15cm in diameter and 7.5cm in thickness, which had a little different thickness compared to the KS standard cylinder of ${\phi}15{\times}30cm$. The concrete stress ratio of compressive against horizontal from FEA was 3.1, while that from theory was 3.0. The stress distributions of mortar and steel were almost similar at different thicknesses. The measured static split tensile strengths of concrete and mortar were quite similar at 30cm and 7.5cm thickness cylinders. The measured stress-strain relationship showed their consistency at all specimens regardless of thickness, and confirmed the results from FEA. As a results, the concrete split tension specimen, cylinder of 15cm in diameter and 7.5cm in thickness, could be used at fatigue test because of its accuracy, simplicity and convenience.

Comparison and Validation Study on Computational Fluid Dynamics and Wind Tunnel Test Results of Standard Dynamics Model (표준 동안정 모델의 전산유체해석 및 풍동시험 결과 비교검증)

  • Cho, Donghyurn;Kim, Seung Pil;An, Eunhye;Choi, Younseok;Roh, Jisoo;Chung, Hyoung Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.217-225
    • /
    • 2017
  • This research represents comparison and validation of static aerodynamic results in different wind tunnel organizations and EFD-CFD results. KAFA conducted wind tunnel tests with Standard Dynamics Model(SDM) which is based on the NRC model, the same configuration of KARI; and then compared and analyzed similarities and differences of the data from KARI and NRC results for verifying the accuracy of wind tunnel tests. Also, We compared the result of CFD with that of wind tunnel tests and examined strakes effect in static characteristics which are attached on the forward fuselage of SDM for investigating the cause of some discrepancies. From this analysis, there are some discrepancies in Cm tendency between EFD-CFD and it did not show the big difference of aerodynamic characteristics by strake effects. Thus, we need to research additionally for analyzing the different cause of some discrepancies such as vortex structures by the rear strut or intake of SDM and regenerating grid resolution of CFD.

An efficient 2.5D inversion of loop-loop electromagnetic data (루프-루프 전자탐사자료의 효과적인 2.5차원 역산)

  • Song, Yoon-Ho;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 2008
  • We have developed an inversion algorithm for loop-loop electromagnetic (EM) data, based on the localised non-linear or extended Born approximation to the solution of the 2.5D integral equation describing an EM scattering problem. Source and receiver configuration may be horizontal co-planar (HCP) or vertical co-planar (VCP). Both multi-frequency and multi-separation data can be incorporated. Our inversion code runs on a PC platform without heavy computational load. For the sake of stable and high-resolution performance of the inversion, we implemented an algorithm determining an optimum spatially varying Lagrangian multiplier as a function of sensitivity distribution, through parameter resolution matrix and Backus-Gilbert spread function analysis. Considering that the different source-receiver orientation characteristics cause inconsistent sensitivities to the resistivity structure in simultaneous inversion of HCP and VCP data, which affects the stability and resolution of the inversion result, we adapted a weighting scheme based on the variances of misfits between the measured and calculated datasets. The accuracy of the modelling code that we have developed has been proven over the frequency, conductivity, and geometric ranges typically used in a loop-loop EM system through comparison with 2.5D finite-element modelling results. We first applied the inversion to synthetic data, from a model with resistive as well as conductive inhomogeneities embedded in a homogeneous half-space, to validate its performance. Applying the inversion to field data and comparing the result with that of dc resistivity data, we conclude that the newly developed algorithm provides a reasonable image of the subsurface.

Implementation of Interactive Media Content Production Framework based on Gesture Recognition (제스처 인식 기반의 인터랙티브 미디어 콘텐츠 제작 프레임워크 구현)

  • Koh, You-jin;Kim, Tae-Won;Kim, Yong-Goo;Choi, Yoo-Joo
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.545-559
    • /
    • 2020
  • In this paper, we propose a content creation framework that enables users without programming experience to easily create interactive media content that responds to user gestures. In the proposed framework, users define the gestures they use and the media effects that respond to them by numbers, and link them in a text-based configuration file. In the proposed framework, the interactive media content that responds to the user's gesture is linked with the dynamic projection mapping module to track the user's location and project the media effects onto the user. To reduce the processing speed and memory burden of the gesture recognition, the user's movement is expressed as a gray scale motion history image. We designed a convolutional neural network model for gesture recognition using motion history images as input data. The number of network layers and hyperparameters of the convolutional neural network model were determined through experiments that recognize five gestures, and applied to the proposed framework. In the gesture recognition experiment, we obtained a recognition accuracy of 97.96% and a processing speed of 12.04 FPS. In the experiment connected with the three media effects, we confirmed that the intended media effect was appropriately displayed in real-time according to the user's gesture.

Large Deformation Analysis of Nonlinear Beam Element Based on Pseudo Lagrangian Formulation (Pseudo Lagrangian방법(方法)에 의한 비선형(非線型) 보요소(要素)의 대변형(大變形) 해석(解析))

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.29-38
    • /
    • 1990
  • A totally, new approach of Lagrangian formulation named 'Pseudo Lagrangian Formulation(PLF)' for large deformation analysis of continue and structures by the finite of element method has been presented, and the efficiency and accuracy of nonlinear analysis beam element formulated by PLF has been discussed by solving several numerical examples. In PLF, the deformation of a body is maeasured by assigning a nonphysical 'Pseudo' configuration as reference. The Lagrangian deformation and the finite element mapping of the traditonal Lagrangian approaches are then carried out directly at the same time, The result of numerical tests shows superior performance of PLF to the traditional Lagrangian methods, Applications of PLF to small and finite deformation problems indicate that PLF not only serves as an alternative but has certain implementational advantages over total or updated Lagrangian formulations.

  • PDF

ADVANTAGE OF USING FREE NETWORK ADJUSTMENT TECHNIQUE IN THE CRUSTAL MOVEMENT MONITORING GEODETIC NETWORKS

  • AhmedM.Hamdy;Jo,Bong-Gon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • There are numerous adjustment techniques that deal with the adjustment of geodetic networks but the least squares adjustment is the most common one. During the network adjustment procedure two techniques can be used, the free network adjustment technique and the constrained network adjustment technique. In order to determine the optimum technique for adjusting the geodetic networks, which used for the geodynamical purposes, data from two different geodetic networks "Sinai geodetic network, Egypt, and HGN network, South Korea" had been examined. The used networks had a different configuration and located in different areas with different seismic activity. The results show that both techniques have a high accuracy and no remarkable differences in terms of RMS. On the contrary, the resulted coordinates shows that the constrained network adjustment technique not only cause a remarkable distortion in the station final coordinates but also if the fixed points that define the datum parameters are changed different solutions for the coordinates will be determined. This distortion affect not only in the determination of point displacement but also in the estimation of the deformation parameters, which play a significant role in the geodynamical interpretation of results. Comparing the results which obtained from both techniques with the widely known geodynamical models of the area reviles that the free network adjustment technique results are clearly match with these models, while those obtained from the constrained technique didn’t match at all. By considering the results it seams to be that the free network adjustment technique is the optimum technique, which can be used for the geodetic network adjustment.

  • PDF

Fabrication of the Wafer Level Packaged LED Integrated Temperature Sensor and Configuration of The Compensation System for The LED's Optical Properties (온도센서가 집적된 WLP LED의 제작과 이를 통한 광 특성 보상 시스템의 구현)

  • Kang, In-Ku;Kim, Jin-Kwan;Lee, Hee-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.1-9
    • /
    • 2012
  • In this paper, resistance temperature detector (RTD) integrated into the LED package is proposed in order to solve the temperature dependence of LED's optical properties. To measure the package temperature in real time, the RTD type temperature sensor having excellent accuracy and linearity between temperature change and resistance change was adopted. A stable metallic film is required for long term reliability and stability of the RTD type temperature sensor. Therefore, deposition and annealing condition for the film were determined. Based on the determined condition, the RTD type temperature sensor with the sensitivity of about $1.560{\Omega}/^{\circ}C$ was fabricated inside the LED package. In order to configurate the LED package system keeping the constant brightness regardless of the temperature, additional conversion circuit and control circuit boards were fabricated and added to the fabricated LED package. The proposed system was designed to compensate the light intensity caused by temperature change using the variable duty rate of driving current. As a result, the duty rate of PWM signal which is the output signal of the configurated system was changed with the temperature change, and the duty rate was similarly varied with the target duty rate. Consequently, it was focused the fabricated RTD can be used for compensating the optical properties of LED and the LED package which exhibits constant brightness regardless of the temperature change.

Speed-Power Performance Analysis of an Existing 8,600 TEU Container Ship using SPA(Ship Performance Analysis) Program and Discussion on Wind-Resistance Coefficients

  • Shin, Myung-Soo;Ki, Min Suk;Park, Beom Jin;Lee, Gyeong Joong;Lee, Yeong Yeon;Kim, Yeongseon;Lee, Sang Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.294-303
    • /
    • 2020
  • This study discusses data collection, calculation of wind and wave-induced resistance, and speed-power analysis of an 8,600 TEU container ship. Data acquisition system of the ship operator was improved to obtain the data necessary for the analysis, which was accomplished using SPA (Ship Performance Analysis, Park et al., 2019) in conformation with ISO15016:2015. From a previous operation profile of the container, the standard operating conditions of mean draft were 12.5 m and 13.6 m, which were defined with the mean stowage configuration of each condition. Model tests, including the load-variation test, were conducted to validate new ship performance and for the speed-power analysis. The major part of the added resistance of container ship is due to the wind. To check the reliability of wind-resistance calculation results, the resistance coefficients, added resistance, and speed-power analysis results using the Fujiwara regression formula (ISO15016:2015) and Computational fluid dynamics (Ryu et al., 2016; Jeon et al., 2017) analysis were compared. Wind speed and direction measured using an anemometer were used for wind-resistance calculation and the wave resistance was calculated using the wave-height and direction-data from weather information. Also, measured water temperature was used to calculate the increase in resistance owing to the deviation in water density. As a result, the SPA analysis using measured data and weather information was proved to be valid and able to identify the ship's resistance propulsion performance. Even with little difference in the air-resistance coefficient value, both methods provide sufficient accuracy for speed-power analysis. The differences were unnoticeable when the speed-power analysis results using each method were compared. Also, speed-power analysis results of the 8,600 TEU container ship in two draft conditions show acceptable trends when compared with the model test results and are also able to show power increase owing to hull fouling and aging. Thus, results of speed-power analysis of the existing 8,600 TEU container ship using the SPA program appropriately exhibit the characteristics of speed-power performance in deal conditions.