• Title/Summary/Keyword: Conductivity technique

Search Result 416, Processing Time 0.03 seconds

An Electrical Conductivity Reconstruction for Evaluating Bone Mineral Density : Simulation (골 밀도 평가를 위한 뼈의 전기 전도도 재구성: 시뮬레이션)

  • 최민주;김민찬;강관석;최흥호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • Osteoporosis is a clinical condition in which the amount of bone tissue is reduced and the likelihood of fracture is increased. It is known that the electrical property of the bone is related to its density, and, in particular, the electrical resistance of the bone decreases as the bone loss increases. This implies that the electrical property of bone may be an useful parameter to diagnose osteoporosis, provided that it can be readily measured. The study attempted to evaluate the electrical conductivity of bone using a technique of electrical impedance tomography (EIT). It nay not be easy in general to get an EIT for the bone due to the big difference (an order of 2) of electrical properties between the bone and the surrounding soft tissue. In the present study, we took an adaptive mesh regeneration technique originally developed for the detection of two phase boundaries and modified it to be able to reconstruct the electrical conductivity inside the boundary provided that the geometry of the boundary was given. Numerical simulation was carried out for a tibia phantom, circular cylindrical phantom (radius of 40 mm) inside of which there is an ellipsoidal homeogenous tibia bone (short and long radius are 17 mm and 15 mm, respectively) surrounded by the soft tissue. The bone was located in the 15 mm above from the center of the circular cross section of the phantom. The electrical conductivity of the soft tissue was set to be 4 mS/cm and varies from 0.01 to 1 ms/cm for the bone. The simulation considered measurement errors in order to look into its effects. The simulated results showed that, if the measurement error was maintained less than 5 %, the reconstructed electrical conductivity of the bone was within 10 % errors. The accuracy increased with the electrical conductivity of the bone, as expected. This indicates that the present technique provides more accurate information for osteoporotic bones. It should be noted that tile simulation is based on a simple two phase image for the bone and the surrounding soft tissue when its anatomical information is provided. Nevertheless, the study indicates the possibility that the EIT technique may be used as a new means to detect the bone loss leading to osteoporotic fractures.

The Study on Development of Plating Technique on Electroless Ni/Au (무전해 니켈/금도금 기술 개발에 관한 연구)

  • Park Soo-Gil;Park Jong-Eun;Jung Seung-Jun;Yum Jae-Suk;Jun Sae-ho;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.138-143
    • /
    • 1999
  • Recently, miniaturization of large scale integrated circuits (LSI) and printed circuit board (PCB) have become essential with the downsizing of electronic devices. Gold electroplating is applied of conductivity wiring or terminals for improvement of conductivity and corrosion resistance. However, electroplating is not applicable since the circuits are becoming finer and denser. Accordingly, electroless plating is recently highly attractive method because of the simplicity of the operation requiring no external source of current and no elaborate equipment. In this work, we tried to develop a plating technique on electroless Ni/Au plating. First, the electroless Ni plating was deposited on the PCB with agitation in the bath at $85^{\circ}C$. Then the Au layer was deposited on the Ni layer surface by same method at $90^{\circ}C$. The bonderability were tested in order to evaluate the stability of the electroless Ni/Au by gold wire or solder ball test.

Spatial analysis of small-loop electromagnetic survey data in a seawater intrusion region (해수침투 지역에서 소형루프 전자탐사 자료의 공간 분석)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.114-120
    • /
    • 2006
  • The main purpose of this study is to apply spatial analysis using semivariograms to small-loop electromagnetic survey data to assess the extent of seawater intrusion in an experimental watershed. To indicate the extent of seawater intrusion over the study area, vertical electrical soundings at 33 points and electrical conductivity logging in two wells were conducted. From the correlation between resistivities obtained by inversion and the depth of the aquifer at the two wells, the region of seawater intrusion was identified and demonstrated by electrical conductivity logging results obtained over two years. To measure the variation of apparent conductivity with depth, an electromagnetic survey in six frequency bands was adopted. Apparent conductivity mapping with spatial analysis using semivariograms is an effective technique for identifying the region of seawater intrusion at shallow depth.

Effects of Yttria and Calcia Co-Doping on the Electrical Conductivity of Zirconia Ceramics

  • Lee, Jong-Sook;Shin, Dong-Kyu;Choi, Byung-Yun;Jeon, Jung-Kwang;Jin, Sung-Hwan;Jung, Kwon-Hee;An, Pyung-An;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.655-659
    • /
    • 2007
  • Zirconia polycrystals co-doped with x mol% CaO and (10-x) mol% $Y_2O_3$ were prepared by solid state reaction method. The compositions were chosen for nominally the same oxygen vacancy concentration of 5 mol%. X-ray diffraction patterns indicated the formation of cubic zirconia by heat treatment at $1600^{\circ}C$. Impedance spectroscopy was applied to deconvolute the bulk and grain boundary response. Electrical conductivity was measured using the complex impedance technique from 516 to 874 K in air. Maximum conductivity was exhibited by the composition with equal amounts of CaO and $Y_2O_3$, which may be ascribed to the smaller degree of defect-interactions in that composition due to the competition of different ordering schemes between the two systems. When compared to the composition containing $Y_2O_3$ only, co-doping of CaO increases the grain boundary resistance considerably. The activation energy of grain and grain boundary conductivity was 1.1 eV and 1.2 eV, respectively, with no appreciable dependence on dopant compositions.

Uncertainty Analysis for Head and Gradient Incorporating Spatial Nonuniformity of Hydraulic Conductivity around Underground Storage Caverns (지하공동주변 수리전도도의 불균일성을 도입한 수두 및 동수경사의 불확실성 해석)

  • Jeong, Il-Mun;Jo, Won-Cheol;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.553-564
    • /
    • 1998
  • For the proper design and management of underground storage cavern, groundwater flow around cavern should be analyzed. Since this flow is influenced by spatial nonuniformity of hudraulic conductivity, the two-dimensional finite element flow model incorporating stochastic concepts was developed to analyze influences due to this nonuniformity. Monte Carlo technique was applied to obtain an approximate solution for two-dimensional, steady flow in a stochastically defined nonuniform medisu. For this purpose, the values of hydraulic conductivity were generated for each element with known mean and standard deviations. The uncertainty in model prediction depends on both the nonuniformity in hydraulic conductivity and the natures of the flow system such as water curtain and boundary condition. Therefore the uncertainties in predicted hydraulic head and gradient are the greatest where the mean hydraulic gradients are relatively large and far from the boundaries. Especially, we relate these uncertainties with well known gas tightness condition.

  • PDF

Characteristics of Expanded Graphite Filled Conductive Polymer Composites for PEM Fuel Cell Bipolar Plates

  • Oh, K.S.;Heo, S.I.;Yun, J.C.;Yang, Y.C.;Han, K.S.
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.259-275
    • /
    • 2008
  • This study aims to optimize the mechanical and electrical properties of electrically conductive polymer composites (CPCs) for use as a material of bipolar plates for PEM fuel cells. The thin CPCs consisting of conductive fillers and polymer resin were fabricated by a preform molding technique. Expanded graphite (EG), flake-type graphite (FG) and carbon fiber (CF) were used as conductive fillers. This study tested two types of CPCs, EG/FG filled CPCs and EG/CF filled CPCs, to optimize the material properties. First, the characteristics of EG/FG filled CPCs were investigated according to the FG ratio for 7 and $100{\mu}m$ sized FG. CPCs using $100{\mu}m$ FG showed optimal material properties at 60 wt% FG ratio, which were an electrical conductivity of 390 S/cm and flexural strength of 51 MPa. The particle size was an important parameter to change the mechanical and electrical behaviors. The flexural strength was sensitive to the particle size due to the different levels of densification. The electrical conductivity also showed size-dependent behavior because of the different contributions to the conductive network. Meanwhile, the material properties of EG/CF filled CPCs was also optimized according to the CF ratio, and the optimized electrical conductivity and flexural strength were 290 S/cm and 58 MPa, respectively. The electrical conductivity of this case decreased similarly to the EG/FG filled case. On the other hand, the behavior of the flexural strength was more complicated than the EG/FG filled case, and the reason was attributed to the interaction between the strengthening effect of CF and the deterioration of voids.

Conductivity Image Reconstruction Using Modified Gauss-Newton Method in Electrical Impedance Tomography (전기 임피던스 단층촬영 기법에서 수정된 가우스-뉴턴 방법을 이용한 도전율 영상 복원)

  • Kim, Bong Seok;Park, Hyung Jun;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.219-224
    • /
    • 2015
  • Electrical impedance tomography is an imaging technique to reconstruct the internal conductivity distribution based on applied currents and measured voltages in a domain of interest. In this paper, a modified Gauss-Newton method is proposed for conductivity image reconstruction. In the proposed method, the dimension of the inverse term is reduced by replacing the number of elements with the number of measurement data in the conductivity updating equation of the conventional Gauss-Newton method. Therefore, the computation time is greatly reduced as compared to the conventional Gauss-Newton method. Moreover, the regularization parameter is selected by computing the minimum-maximum from the diagonal components of the Jacobian matrix at every iteration. The numerical experiments with several scenarios were carried out to evaluate the reconstruction performance of the proposed method.

Evaluation of 475 ℃ embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Lopez-Morelos, Victor H.;Kim, Jin-Yeon;Gonzalez-Sanchez, Jorge;Medina-Flores, Ariosto
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2982-2989
    • /
    • 2021
  • One of the consequences of the 475 ℃ embrittlement of duplex stainless steels is the reduction of the resistance to localized corrosion. Therefore, the detection of this type of embrittlement before the material exhibits significant loss in toughness, and corrosion resistance is important to ensure the structural integrity of critical components under corrosion threats. In this research, conductivity measurements are performed using the alternating current potential drop (ACPD) technique with using a portable four-point probe as a nondestructive evaluation (NDE) method for detecting the embrittlement in a 2507 (UNS S32750) super duplex stainless steel (SDSS) aged at 475 ℃ from as-received condition to 300 h. The electric conductivity results were compared against two electrochemical tests namely double loop electrochemical potentiokinetic reactivation (DL-EPR) and critical pitting temperature (CPT). Mechanical tests and the microstructure characterized using scanning electron microscopy (SEM) imaging are conducted to track the progress of embrittlement. It is shown that the electric conductivity correlates with the changes in impact energy, microhardness, and CPT corrosion tests result demonstrating the feasibility of the four-point probe as a possible field-deployable method for evaluating the 475 ℃ embrittlement of 2507 SDSS.

A study on the deposition conditions and physical properties of the Hexadecyl Dipyridinium-$(TCNQ^-)_2$ thin films with Langmuir-Blodgett technique (LB법을 이용한 Hexadecyl Dipyridinium-$(TCNQ^-)_2$의 박막 제작과 물리적 특성 연구)

  • Lee, Yong-Soo;Shin, Dong-Myung;Kim, Tae-Wan;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1722-1724
    • /
    • 1996
  • Enhancing the electrical conductivity of the ultrathin organic films is one of the important factors for the development of molecular electronic devices. The Langmuir-Blodgett(LB) technique has recently been attracted as out of the ways of deposition ultrathin films. We have studied manufacturing conditions and physical properties of Hexadecyl Dipyridinium-$(TCNQ^-)_2$ LB films made by Kuhn type apparatus. A ${\pi}-A$ isotherm shows that a limiting area is around $180{\AA}^2/molecule$ and a proper surface pressure for a deposition is around 22mN/m. A transfer ratio shows that Hexadecyl Dipyridinium-$(TCNQ^-)_2$ is able to be deposited as an Y-type. UV /visible absorption spectra shows that TCNQ dimer peak is apeared at about 600nm in LB films. In solution, $TCNQ^-$ peak is observed at about 400nm and charge transfer band at $830{\sim}900nm$. A horizontal conductivity of the Hexadecyl Dipyridinium-$(TCNQ^-)_2$ LB film is about $10^{-7}(S/cm)$.

  • PDF

Inverse Estimation of Thermal Properties for APC-2 Composite (역열전도 기법을 이요한 복잡재료의 열물성치의 산정)

  • Jeong, Beop-Seong;Kim, Seon-Gyeong;Kim, Hui-Jun;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.673-679
    • /
    • 2001
  • The objective of this work is to estimate the temperature dependent thermal properties of the APC-2 composite using a inverse parameter estimation technique. The present inverse method features the estimation of the thermal conductivity and the volumetric heat capacity, which are dependent on the temperature inside the composite. Furthermore, the thermal conductivity is directionally dependent because of the aniosotropy of the composite. An on-line temperature measurement system with a suitable method of heating is built. A composite slab is fabricated using thermoplastic prepreg for the investigation. The corresponding computer code for evaluating the thermal properties inversely using the temperature reading transmitted from the measurement system is developed. The parameterized form is used for the rapid and stable estimation. The modified Newtons method is adopted for the solution technique of the inverse analysis. The estimated results are compared with the measured data from a previous study for the verification.