Abstract
Zirconia polycrystals co-doped with x mol% CaO and (10-x) mol% $Y_2O_3$ were prepared by solid state reaction method. The compositions were chosen for nominally the same oxygen vacancy concentration of 5 mol%. X-ray diffraction patterns indicated the formation of cubic zirconia by heat treatment at $1600^{\circ}C$. Impedance spectroscopy was applied to deconvolute the bulk and grain boundary response. Electrical conductivity was measured using the complex impedance technique from 516 to 874 K in air. Maximum conductivity was exhibited by the composition with equal amounts of CaO and $Y_2O_3$, which may be ascribed to the smaller degree of defect-interactions in that composition due to the competition of different ordering schemes between the two systems. When compared to the composition containing $Y_2O_3$ only, co-doping of CaO increases the grain boundary resistance considerably. The activation energy of grain and grain boundary conductivity was 1.1 eV and 1.2 eV, respectively, with no appreciable dependence on dopant compositions.