• Title/Summary/Keyword: Concurrent Engineering Design

Search Result 241, Processing Time 0.031 seconds

Concurrent Engineering Approach to the Die Design of Metal Forming Process using Rapid Prototyping and Finite Element Analysis (쾌속 3차원 조형법과 유한요소해석을 연계한 소성가공 금형설계의 동시공학적 접근방법)

  • Part, K.;Yoon, J.W.;Cho, J.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.146-154
    • /
    • 1996
  • In this work, rapid prototyping and three-dimensional finite element analysis are simultaneously applied to the die design of metal forming processes. Rapid prototyping is a new prototyping technology which produces three-dimensional part models directly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Apparatus(SLA), which is the most widely used rapidprototyping system, is introduced to manufacture the die set. For general preparation of STL file, which is the standard input file of rapid prototyping system, mesh data which are used in describing the die surface in finite element analysis are translated so that rapid prototyping and finite element analysis are dffectively connected. A die set for spider forging and a clover punch for deep drawing section are manufactured effciently using SLA prototypes, and metal forming experiments are carried out using them. Comparing the result of experiments with that of analyses, the processes can be predicted and designed successfully.

  • PDF

A Study for Process Representation using STEP (STEF을 이용한 프로세스 표현에 관한 연구)

  • 황호진;이수홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.371-380
    • /
    • 1999
  • This study proposes a process information model which can integrate various activities during the product development process, the system which can manage the process. Development process information will allow designers and managers to access previous tasks readily and utilize the information in making decisions at hand. While developing products in heterogeneous and distributed environments, concurrent and collaborative designs can be achieved by STEP. The process model in this study divides the task of product development into two fundamental parts, Specific Process(SP) and Normal Process(NP). SP includes the specific information and refer to those defined by prior STEP. NP is routine process excluded from being defined as SP. Due data information can be added to manage development pace and to show delayed tasks. As two or more different processes can be linked to show the entire development flow, Static STEP information can be dynamically interlaced. Remote location operations can be incorporated on the Internet using STEP, and information can be shared. The system has been built upon a process model schema so that task stage, design history, and different development style can be managed and accessed for each component. The system has been proven efficient in information management and exchange by several scenario testings.

  • PDF

Concurrent engineering frameworks

  • Kim, Joo-Yong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.689-692
    • /
    • 1996
  • The environment surrounded by industries is represented by the 3Cs : Customers, Competition, and Changes. The 3Cs drive industries to pursue external business targets such as customer's needs and marketplaces with BPR (Business Process Reengineering). BPR addresses core business process. One of these core business processes is product development. This product development process has been reengineered by the concept of CE (Concurrent Engineering). The aim of the paper is to build frameworks of CE to clarify the CE concept. This paper begins with investigating the product development process from the perspectives of three drivers: cost, quality and speed. CE frameworks are then followed. The first frmework is concerned with the CE definition and thus three keyphrases are extracted : from the outset, concurrent design and systematic approach. Concerned with the CE implementation, the second framework is composed of five components: generalist & specialist, cross-function team, enabling tools & techniques, success metrics, and total visibility. This paper concludes that the CE practice is hard to achieve because of the 'dont't-tell-them-early' attitude of upstream people, and the 'wait-and-see' attitude of downstream people. As resolution, a change management program is recommended that changes an employees mind-set. This paper also supposes computer systems which facilitate and keep automatic track of the CE process as engineered. Finally it gives a warning that computer systems alone do not guarantee success without being preceded by process re-engineering.

  • PDF

A study of Concurrent Dual Band Mixer Design Using Dual-Gate FET Structure (Dual-Gate FET구조를 이용한 Concurrent 이중 대역 주파수 혼합기 설계 연구)

  • Jung, Hyo-Bin;Choi, Jin-Kyu;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.153-156
    • /
    • 2008
  • 본 논문은 Local oscillator의 2차 harmonic 신호를 이용하고 Dual gate FET 형태를 이용한 이중대역 주파수 혼합기 설계에 대한 연구 이다. 기존의 회로 구조는 두 대역을 처리하기 위해 각각 두 개의 국부 발진기와 혼합기를 사용함으로 인하여 구조의 복잡함과 큰 전력 손실이라는 단점을 가지고 있었다. 본 연구는 하나의 주파수 혼합기로 두 개의 대역에서 동시에 적용할 수 있는 Concurrent 이중 대역 설계 연구를 하였다. ISM(Industrial Science Medical) 대역 인 912MHz, 2.45GHz의 RF 입력과 455.5MHz, 1224.5MHz의 LO 입력 신호에서 동일한 IF인 1MHz로 하향변환 했을 때 모의실험 결과 변환이득은 각각 7dB, 12dB로 이고 RF-LO 격리도는 -29dB, -24.7dB가 나왔다. 또한 두 입력 단에서의 반사손실의 -15dB 이상을 얻었다. 또한 각각의 대역에서 잡음지수는 8.5dB, 6.26dB이다.

  • PDF

Set-Based Multi-objective Design Optimization at the Early Phase of Design(The First Report) : Theory and Design Support System (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제1보) : 이론 및 설계지원 시스템)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.2
    • /
    • pp.112-120
    • /
    • 2011
  • The early phase of design intrinsically contains multiple sources of uncertainty in describing design, and nevertheless the decision-making process at this phase exerts a critical effect upon drawing a successful design. This paper proposes a set-based design approach for multi-objective design problem under uncertainty. The proposed design approach consists of four design processes including set representation, set propagation, set modification, and set narrowing. This approach enables the flexible and robust design while incorporating designer's preference structure. In contrast to existing optimization techniques, this approach generates a ranged set of design solutions that satisfy changing sets of performance requirements.

Concurrent engineering solution for the design of ship and offshore bracket parts and fabrication process

  • Kim, Tae-Won;Lim, Sang-Sub;Seok, Ho-Hyun;Kang, Chung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.376-391
    • /
    • 2013
  • Brackets in ships and offshore structures are added structures that can endure stress concentrations. In this study, a concurrent engineering solution was proposed, and a high strength low carbon cast steel alloy applicable to offshore structures was designed and developed. The yield strength and ultimate tensile strength of the designed steel were 480 and 600 MPa, respectively. The carbon equivalent of the steel was 0.446 with a weld crack susceptibility index of 0.219. The optimal structural design of the brackets for offshore structures was evaluated using ANSYS commercial software. The possibility of replacing an assembly of conventional built-up brackets with a single casting bulb bracket was verified. The casting process was simulated using MAGMAsoft commercial software, and a casting fabrication process was designed. For the proposed bulb bracket, it was possible to reduce the size and weight by approximately 30% and 50%, respectively, compared to the conventional type of bracket.

Interval Analysis for Assemblability Checking between Variational Parts : Part 2 (오차를 갖는 부품간의 조립성 확인을 위한 인터벌 분석 : 2편)

  • Park, S.H.;Lee, K.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.122-132
    • /
    • 1996
  • It can be expected that the tolerances of the parts are assigned systematically and thus the parts are designed considering the assemblability in advance in the design stage, if the tolerances can be stored together with the geometric model of the parts and the assemblability of the parts is verified in the computer. In other words, an example of the concurrent engineering is realized. To verify the concepts described above, a new method is proposed to verify the assemblability when the tolerance information and the geometric model of the parts of an assembly are given. This method determines the assemblability by subdividing the range of relative motion between parts until the subdivided region corresponding to free of interference can be found.

  • PDF

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Second Report) : Application to Automotive Side-Door Impact Beams (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제2보) : 자동차 사이드 도어 임팩트 빔에의 적용)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.8-15
    • /
    • 2011
  • The computer-based simulation tools are currently used overwhelmingly to simulate the performance of automotive designs. Then, the search for an optimal solution that satisfies a number of performance requirements usually involves numerous iterations among several simulation tools. Therefore, meta-modeling techniques are becoming widely used to build approximations of computationally expensive computer analysis tools. The set-based approach proposed in the first report of a four-part paper has been a test bed for the innovation of vehicle structure design process in the Structural Design and Fabrication Committee of JSAE(Society of Automotive Engineers of Japan). In the second report, the proposed design approach is illustrated with a side-door impact beam design example using meta-modeling techniques.

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

A Study on Manufacturing Resin-based Blow Mold using SLS Parts and Forming Prototype-car Parts (SLS 조형품을 이용한 수지형 블로우 몰드 제작 및 시작차 부품성형에 관한 연구)

  • 양화준;황보중;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.124-131
    • /
    • 2000
  • Rapid Prototyping(RP) models are no longer used only for design verification. Currently, parts built utilizing layer manufacturing technology can be employed as functional prototypes and as patterns or tools for different manufacturing processes such as vacuum casting, investment casting, injection molding, precise casting and sand casting. This trend of Rapid Prototyping application meets the requirement of concurrent engineering and its range covers a more spreaded area. The aim of this paper is saving the manufacturing lead time and cost of plastic parts having hollow space shapes used by prototype-car. Using rapid prototype patterns, made by the Selective Laser Sintering(SLS) technique, a new approach of manufacturing resin-based blow mold is discussed. It has a great potential fur making prototype-car parts with the batch size of under 200 parts, in case of rapid modification due to a subsequent design changes in developing stage. So, the process proposed in this research shows reduction of process time and manufacturing cost when compared with the conventional process such as a Zinc Alloy fur Stamping(ZAS) mold.

  • PDF