• Title/Summary/Keyword: Concurrent Engineering Design

Search Result 241, Processing Time 0.028 seconds

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

Sliding Friction of Elastomer Composites in Contact with Rough Self-affine Surfaces: Theory and Application (자기-아핀 표면 특성을 고려한 유기탄성체 복합재료 마찰 이론 및 타이어 트레드/노면 마찰 응용)

  • Bumyong Yoon;Yoon Jin Chang;Baekhwan Kim;Jonghwan Suhr
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • This review paper presents an introduction of contact mechanics and rubber friction theory for sliding friction of elastomer composites in contact with rough surfaces. Particularly, Klüppel & Heinrich theory considers the self-affine (or fractal) characteristic for rough surfaces to predict adhesion and hysteresis frictions of elastomers based on the contact mechanics of Greenwood & Williamson. Due to dynamic excitation process of elastomer composites while sliding in contact with multiscale surface roughness (or asperity), viscoelastic properties in a wide frequency range becomes major contributor to friction behaviors. A brief description and examples are provided to construct a viscoelastic master curve considering nonlinear viscoelasticity of elastomer composites. Finally, application of rubber friction theory to tire tread compounds in traction with road surfaces is discussed with several experimental and theoretical results.

CRESTIVE-DX: Design and Implementation of Distrusted Concolic Testing Tool for Embedded Software (CRESTIVE-DX: 임베디드 소프트웨어에 대해 테스트케이스 생성을 지원하는 분산 Concolic 테스팅 도구)

  • Leem, Hyerin;Choe, Hansol;Kim, Hyorim;Hong, Shin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.8
    • /
    • pp.229-234
    • /
    • 2020
  • This paper presents the design and the implementation of CRESTIVE-DX, a concolic testing tool that distribute the concolic testing process over the embedded target system and the host system for efficient test generation of a target embedded program. CRESTIVE-DX conducts the execution of a target program on the target embedded system to consider possible machine-dependent behaviors of a target program execution, and conducts machine-independent parts, such as search-strategy heuristics, constraint solving, on host systems with high-speed computation unit, and coordinates their concurrent executions. CRESTIVE-DX is implemented by extending an existing concolic testing tool for C programs CREST. We conducted experiments with a test bed that consists of an embedded target system in the Arm Cortex A54 architecture and host systems in the x86-64 architecture. The results of experiments with Unix utility programs Grep, Busybox Awk, and Busybox Ed show that test input generation of CRESTIVE-DX is 1.59 to 2.64 times faster than that of CREST.

A Comparison of Subjective Mental Workload Measures in Driving Contexts

  • Kim, Ji Yeon;Ji, Yong Gu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.167-177
    • /
    • 2013
  • Objective: This study aims to compare the usefulness of subjective measures which are comprised of existing methods like NASA-TLX, Bedford-scale and ZEIS and newly developed method like DALI in measuring drivers' mental workload in terms of validity, sensitivity and diagnosticity. Background: Nowadays, with the development of intelligent vehicle and HMI, mental workload of driver has become more and more important. For this reason, the studies on drivers' mental workload about driving situation and the use of information technology equipment such as mobile phones and navigations were conducted intensively. However, the studies on measuring drivers' mental workload were rarely conducted. Moreover, most of studies on comparison of subjective measures were used with performance based measure. However, performance based measures can cause distraction effect with subjective measures. Method: Participants (N=19) were engaged in a driving simulation experiment in 2 driving contexts (downtown driving and highway driving context). The experiment has 2 sessions according to driving contexts. The level of difficulties by driving contexts were adjusted according to existence of intersections, traffic signs and signals, billboards and the number of doublings. Moreover, as criteria of concurrent validity and sensitivity, the EEG data were recorded before and during the sessions. Results: The results indicated that all subjective methods were correlates with EEG in high-way driving. On the contrary to this, in downtown driving, all subjective methods were not correlates with EEG. In terms of sensitivity, multi-dimensional scales (NASA-TLX, DALI) were the only ones to identify differences between high way and downtown driving. Finally, in terms of diagnosticity, DALI was the most suitable method for evaluating drivers' mental workload in driving context. Conclusion: The DALI as newly developed method dedicated to evaluate driver's mental workload was superior in terms of sensitivity and diagnosticity. However, researchers should consider the characteristics of each subjective method synthetically according to research objective by selecting the method in subjective measures. Application: The results of this study could be applied to the intelligent vehicle and next generation of HMI design to decrease mental workload of driver and for the development of new subjective method in vehicle domain.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

FImplementation of RF Controller based on Digital System for TRS Repeater (TRS 중계기용 디지털기반 RF 제어 시스템의 구현)

  • Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1289-1295
    • /
    • 2007
  • In this paper, we implemented high-performance concurrent control system which manages whole RF systems with digital type and communicates with remote station on both wire and wireless networking. It consists of FPGA (Field Programmable Gate Array) part which controls forward/reverse LPA (Linear Power Amplifier), forward/reverse LNA (Low Noise Amplifier), channel cut wire/wireless TCP/IP, etc, master microprocessor (AVR), which manages the whole control system, Slave microprocessor which communicates SA (Spectrum Analyzer) and observes frequency spectrum of each channel with the resolution of 5KHz, 10 channel card microprocessor which independently observes each channel card and sets frequency synthesizer in channel cut and other peripherals and logics. The whole system is divided to two parts of H/W (hardware) and S/W (software) considering operational efficiency and concurrency, and implementation and cost. H/W consists of FPGA and microprocessor. We expected the optimized operation through H/W and SW co-design and hybrid H/W architecture.

The Concept of Industrial Ecology (산업 생태학의 개념)

  • Choi, Woo Zin;Hong, Soon Sung
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.32-43
    • /
    • 1996
  • The interactions of the societal-industrial system with the environment form one of the most critical issues in today's world. The inadequacy of current environmental regulatory structures and of traditional ways of analyzing environmental issues, together with the continuing need to mitigate the environmental perturbations arising from this complex relationship, have led to the development of a new conceptual framework termed industrial ecology. Industrial ecology (IE), defined by Graedel and Allenby, is the means by which humanity can deliberately and rationally approach and maintain a desirable carrying capacity, given continued economic, cultural and technological evolution. The concept requires that an industrial system be viewed not in isolation from its surrounding systems, but in concert with them. IE is a systems view in which one seeks to optimize the total materials cycle from virgin material, to finished material, to component, to product, to obsolete product, and to ultimate disposal. Factors to be optimized include resources, energy, and capital. In the present paper, the concept of Industrial Ecology and its application through efficient and practical Design for Environment (DFE) methodologies and tools will be introduced to Korea. This paper will also emphasis on the industrial environment within which DFE methodologies must be used, including the fundamentals of industrial design activities, concurrent engineering, constraints on design choices and existing technological infrastructure.

  • PDF

An Investigation into the Applicability of Node.js as a Platform for implementing Mobile Web Apps. (모바일 웹 어플리케이션을 구현하기 위한 Node.js 파일에 대한 조사)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.286-289
    • /
    • 2016
  • In this paper, we propose an architecture that affords mobile app based on nomadic smartphone using not only mobile cloud computing- architecture but also a dedicated web platform called Node.js built-in with the asynchronous, Nonblocking, Event-Driven programming paradigm. Furthermore, the design of the proposed architecture takes document oriented database known as MongoDB to deal with the large amount of data transmit by users of mobile web access application. The Node.js aims to give the programmers the tools needed to solves the large number of concurrent connections problem. We demonstrate the effectiveness of the proposed architecture by implementing an android application responsible of real time analysis by using a vehicle to applications smart phones interface approach that considers the smartphones to acts as a remote users which passes driver inputs and delivers output from external applications.

  • PDF

Design and Implementation of Component-based Configuration and Data Management System for Weapon System R & D Processes (컴포넌트 기반의 무기체계 연구개발 형상/정보관리시스템 설계 및 구현)

  • Kim, Hyung-Jun;Seo, Yeong-Geon;Kim, Sang-Bok;Kanng, Ki-Jun;Lee, Bu-Kweon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.127-138
    • /
    • 2008
  • Configuration and data management system for weapon system research and development processes should assist concurrent engineering and collaboration activities for various documents, drawings, part informations and product structure informations. In this thesis we defined the system architecture using the CBD methodology and implemented the component based system development process. Most of the configuration and data management systems consist of three layered system architecture which use the general MVC models. In this thesis we defined four layered system architecture based on EJB structure under J2EE environments. Through the four layered system architecture, we break down the general model layer into two detailed business layers and the ordinary control layer into two system dependent layers. With these four layers, we proposed the methodology that detailed the characteristics of the components. Through the CBD approach and the component based development process, we can get the representation model and implement the actual system of the configuration and data management system for weapon system R&D.

  • PDF