• Title/Summary/Keyword: Concrete repair

Search Result 808, Processing Time 0.023 seconds

The Performance and Application of Repair System for the Exterior Wall According to the Durability Improvement in the RC Structure(Part2:Summary of Inorganic Repair System) (내구성향상을 고려한 R.C조 외벽보수시스템의 성능과 그 활용(제2보:무기질계 보수공 법 개요))

  • Kwon, Young-Jin;Kim, Chul-Ho;Kwak, Young-Jun;Park, Deuk-Kon;Choi, Long
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.139-144
    • /
    • 1995
  • It is the aim of this study to introduce the performance and application of new repair system for the exterior wall by durability failure caused seasand especially. The elementary performance of this repair system is as follows (1)All the layer in the repair are cement based, same with the mother conrete (2)this repair system use SBR admixture (3)This cement and mortar powder for this repair system are premixed and ready to use just adding admixture at the job site.

  • PDF

Economic and Fast-track Rehabilitation of Concrete Pavements and Bridge Decks

  • Ramseyer, Chris;Chancellor, Brent;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • The last 10 years have seen considerable growth in the use of proprietary and special repair cements for concrete pavements in the state of Oklahoma. Many of these products lend themselves to "fast track" construction techniques that allow reopening to traffic within 12 hours or less. These products achieve high early strengths by accelerating the Portland cement hydration process for both Type I and Type III cements. In this paper, the important features of a durable repair which include strength, compatibility and bond or adhesion are first discussed. Then the development, testing and field implementation of the aforementioned materials are discussed including the learning curve required to implement a repair system, not just install a new material. Some of the materials discussed, while expensive on a cost per unit basis, hold great promise for economical use on fast track project.

Post-fire Repair of Concrete Structural Members: A Review on Fire Conditions and Recovered Performance

  • Qiu, Jin;Jiang, Liming;Usmani, Asif
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.323-334
    • /
    • 2021
  • Concrete structures may rarely collapse in fire incidents but fire induced damage to structural members is inevitable as a result of material degradation and thermal expansion. This requires certain repairing measures to be applied to restore the performance of post-fire members. A brief review on investigation of post-fire damage of concrete material and concrete structural members is presented in this paper, followed by a review of post-fire repair research regarding various types of repairing techniques (FRP, steel plate, and concrete section enlargement) and different type of structural members including columns, beams, and slabs. Particularly, the fire scenarios adopted in these studies leading to damage are categorized as three levels according to the duration of gas-phase temperature above 600℃ (t600). The repair effectiveness in terms of recovered performance of concrete structural members compared to the initial undamaged performance has been summarized and compared regarding the repairing techniques and fire intensity levels. The complied results have shown that recovering the ultimate strength is achievable but the stiffness recovery is difficult. Moreover, the current fire loading scenarios adopted in the post-fire repair research are mostly idealized as constant heating rates or standard fire curves, which may have produced unrealistic fire damage patterns and the associated repairing techniques may be not practical. For future studies, the realistic fire impact and the system-level structural damage investigation are necessary.

Flexural Performance of Strenghtened RC Beams After Repair (보수.보강 철근콘크리트 보의 휨 성능)

  • 김병국;신영수;홍기섭;이차돈;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.355-360
    • /
    • 1995
  • A series of 15 reinforced concrete beams was tested to evaluate the flexural performance of the repaired RC beams. the key parameters for this study were the repair materials, polymer/cementitious materials, in addition to the strengthening material, steel plates and carbon fiber sheets. The repaired specimens failed by a typical flexural mode. showing minor interface failure. The results show that epoxy, polyester resins and latex modified cementitous mortars are effective for repairing the concrete beams. However, the flexural preformance of the strengthened beams are varied depending on the repaired materal.

  • PDF

A Study on the Material Properties and Durabilities of Epoxy-Type Repairing Materials (에폭시계 보수재료의 재료특성 및 내구성능 분석)

  • 김도겸;이장화;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.659-664
    • /
    • 1997
  • RC structures can deteriorate for many defective factors. In the repair and retrofit works of concrete, epoxy resins are widely used as repair materials. The object of this study is to investigate the material properties and durabilities of epoxy resins which are commonly used in repairing concrete. The material properties such as line-expansion modulus, viscosity, microstructure and physical parameter as well as the durabilities such as gravity change, tensile strength, elongation change were carried out.

  • PDF

An Experimental Study on the Durability and Reinforcement Corrosion of Polymer Cement Based Repair Material (폴리머시멘트계 단면복구재의 내구성 및 철근부식특성에 관한 실험적 연구)

  • Kim Young Sun;Kim Young Duck;Na Chul Sung;Cho Bong Suk;Kim Gyu Yong;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.487-490
    • /
    • 2005
  • In this study, for the establishment of the performance evaluation methods and the quality control standards of durability recovery method, the data of indoor durability test and the data of the long term exposure test under the coast are accumulated and analyzed. As a result of the indoor test, durability of repair material was more superior to that of plain concrete, but as a result of investigating and evaluating exposure test at 30 month of exposure age under the coastal environment, the difference in electric potential and the reinforcement corrosion at place replaced with repair material are found.

  • PDF

Fresh and Mechanical Properties of Repair Mortar for Shotcrete (숏크리트용 보수 모르타르의 굳기 전 특성 및 역학적 특성)

  • Lee, Jin-Yong;Lee, Kwang-Myong;Lee, Chae-Hyuck;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.325-328
    • /
    • 2006
  • Recently, repair mortars have been mainly used for repairing old concrete structures. In this study, a new repair mortar including shotcrete admixture, slag, silica fume, sulphate and calcium carbonate, was developed for repairing shotcrete layer and the fresh properties and mechanical characteristics of the repair mortar was measured, Test results showed that the shortcrete admixture and other additives reduce the final setting time from about 7 hours to within 20 minutes and increase very early strength and stiffness (within 5 hours after cast).

  • PDF

A Study on the Repair and Strengthening Effencs of R/C Beams with Enlarged Section (단면증설된 R/C보의 보수.보강 효과 연구)

  • 오홍섭;심종성;이차돈;최완철;홍기섭;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.416-424
    • /
    • 1996
  • Reinforced Concrete structures need repair and rehabilitation due to the deterioration such as crack, spalling and disintegration. Numerous repair materials which are currently used in cinstruction fields witdout any specifications are examined in terms of their serviceabilities and effectiveness. In this paper sections of R/C beams are enlarged with repari material(epoxy, latex, premix), and then they are strengthened with rebar, steel plate of CFRP sheet on the tension side. Structural behaivior of strengthened beams are investigated under stactic tests and compared with each parameters.

  • PDF

Examination of Applicability of Repair Mortar using Very High Early Strength Cement (초속경시멘트를 이용한 보수모르터의 현장적용성 검토)

  • Jeon Jin Hwan;Kasai Hiroshi;Yazaki Hideaki;Cho Chung Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.309-312
    • /
    • 2004
  • The hydraulic structure of the hydroelectric power plant such as aqueduct tunnels and the drainage canal became old. Therefore, because the concrete surface of the aqueduct tunnel has received severe damage by wear-out and the crack etc the repair is demanded. This research examined the applicability of the repair mortar which mixed the fly ash and an artificial aggregate by using the very high early strength cement. As a result, good Quality repair mortar which satisfied the demand performance more than self-flow 270mm and compressive strength $50N/mm^2$ (age of 28days) adjusting of water cement ratio by using the MTX cement be able to be manufactured.

  • PDF

Repair LCC Evaluation of RC Structures through the FEM Analysis of Chloride Ion Penetration (염소이온 침투 FEM 해석을 통한 RC구조물의 보수 LCC 평가)

  • Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.223-230
    • /
    • 2006
  • In this paper the method for repair LCC evaluation of reinforced concrete structures deteriorated by chloride attack was constructed. Also, the FEM analysis for chloride ion penetration into concrete was conducted to evaluate the repair LCC which was decided by the number of repair times including early stages of construction and repair construction during the service life of structures. As a result, the number of repair times is obtained from the comparing the concentration of the chloride ion in a rebar position, and the critical chloride ion concentration of rebar corrosion through the FEM analysis considering the kind of repair materials and methods. Also, the repair LCC could be calculated by the number of repair times during the service life of structures.