• Title/Summary/Keyword: Concrete construction

Search Result 8,307, Processing Time 0.028 seconds

The Experience Study on the Floating Properties of Concrete with Recycled Coarse Aggregate (재생굵은골재를 사용한 콘크리트의 유동특성에 관한 실험적 연구)

  • 백철우;김호수;최성우;반성수;류득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.94-97
    • /
    • 2003
  • Recently, owing to the deterioration of reconstruction and the construction, much of the construction waste is discharged in our construction field, and the amount of construction waste are rapidly increased. These waste are raised to financial and environmental problems, so the method of reusing waste concretes has been studied and carried out many direction. Especially being want of resources, if waste concrete could be recycled as aggregate for concrete, it will contribute to solve the exhaustion of natural aggregate, in terms of saving resources and protecting environment. This study is that the floating properties of concrete with recycled coarse aggregate were investigated for the substitution of recycled coarse aggregate. The result of this study, in case of water reducing, the property of harden concrete for the substitution ratio of recycled coarse aggregate was increased. The Quality of recycled coarse aggregate concrete was improved by water reducing.

  • PDF

BIM-BASED PLANNING OF TEMPORARY FACILITIES FOR CONCRETE CONSTRUCTION

  • Kyungki Kim;Jochen Teizer
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.1-6
    • /
    • 2013
  • Concrete construction requires utilization of many temporary facilities such as formwork, shoring, and scaffolding. Appropriate use of these temporary facilities greatly impacts the quality, cost, schedule, and safety of concrete construction. The current practice in design and planning of temporary facilities is often manual, error-prone, and re-active based on construction site layout, status, and progress in the field. Early design and planning of temporary facilities for concrete construction using Building Information Modeling (BIM) technology offers a potential solution. Although some commercially-available software exists that assists in the generation of temporary facility designs, the construction industry lacks tools that support detailed planning and design of many other temporary facilities. This research presents our early work in automating the design and planning of temporary facilities utilizing BIM. Algorithms were developed to automatically assess geometric conditions of work space to detect required temporary facilities and design them. The proposed methodology was implemented in a test model. By automatically incorporating temporary facilities into BIM, more realistic construction models can be created with less effort and errors. Temporary facilities-loaded models can finally be used for communication, bill of materials, scheduling, etc. and as a benchmark for field installation of temporary formwork, shoring, and scaffolding systems.

  • PDF

A study regarding a quality change through four 2000 and 2008 city ready mixed concrete shipment present situations (2000년과 2008년 4대 도시 레미콘 출하 현황(現況)을 통한 품질 변화(變化)에 관(關)한연구(硏究))

  • Cho, Do-Young;Kim, Jong-Baek;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05c
    • /
    • pp.65-68
    • /
    • 2009
  • Recently, the knowledge access about concrete might be 2 methods. One is approach about advanced and new technical development through the institute journal, the other is construction technology which is using at construction fields. However, there is no research for the interrelationship between them. So, this paper investigates the demands on construction fields at the ready mixed concrete plants on the 4 cities, the characteristics of the products like the maximum size of coarse aggregate and slump, and the extension of market on the high strength and flow ability concrete in 2000 and 2008. Moreover, this study would like to propose the investigation about diversification of construction materials for the fine construction cultures and development of the ready mixed concrete to the engineers at the construction fields.

  • PDF

Numerical analysis of spalling of concrete cover at high temperature

  • Ozbolt, Josko;Periskic, Goran;Reinhardt, Hans-Wolf;Eligehausen, Rolf
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.279-293
    • /
    • 2008
  • In the present paper a 3D thermo-hygro-mechanical model for concrete is used to study explosive spalling of concrete cover at high temperature. For a given boundary conditions the distribution of moisture, pore pressure, temperature, stresses and strains are calculated by employing a three-dimensional transient finite element analysis. The used thermo-hygro-mechanical model accounts for the interaction between hygral and thermal properties of concrete. Moreover, these properties are coupled with the mechanical properties of concrete, i.e., it is assumed that the mechanical properties (damage) have an effect on distribution of moisture (pore pressure) and temperature. Stresses in concrete are calculated by employing temperature dependent microplane model. To study explosive spalling of concrete cover, a 3D finite element analysis of a concrete slab, which was locally exposed to high temperature, is performed. It is shown that relatively high pore pressure in concrete can cause explosive spalling. The numerical results indicate that the governing parameter that controls spalling is permeability of concrete. It is also shown that possible buckling of a concrete layer in the spalling zone increases the risk for explosive spalling.

Investigation of the effects on earthquake behavior and rough construction costs of the slab type in reinforced concrete buildings

  • Gursoy, Senol;Uludag, Omer
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.333-343
    • /
    • 2020
  • In the architectural design process, the selection and configuration of the structural system significantly affect the earthquake behaviours of the reinforced concrete buildings. The main purpose of this study, the effects on the earthquake performances and the rough construction cost of the buildings of the slab type in reinforced concrete buildings are to examine comparatively for different local soil classes. The results obtained from this study have been determined that the building model having slabs with beams is safer compared to other types of slabs, especially when considering the vertical bearing structural elements (columns). It also shows that other types of slab, except for slab with beams, reduce the earthquake performances of reinforced concrete buildings, increase the displacement values, 1st natural vibration period values and the cost of rough construction. This matter reveals that slab type is quite important and the preference of beamed slabs in reinforced concrete buildings to be constructed in earthquake zones would be more appropriate in terms of safety and cost.

The Study Concrete Brick Material of Recycle Cement Using (재생시멘트를 이용한 콘크리트벽돌의 물성 연구)

  • Seo Kyung-Ho;Park Cha-Won;Ahn Jae-Cheol;Hee Byeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.87-90
    • /
    • 2004
  • Serious problems of the environment protection and resource exhaustion are exhibited. due to the increase of the construction materials and activation of the remodeling, recently. Especially, most of the advanced countries. recycling plan for the waste concrete is vigorously progressing. The purpose of this study is making advances in the recycling of waste concrete material for use as recycled aggregate to make secondary concrete product. Using recycled aggregates form demolished concrete, we manufactured cement bricks to experiment overall performance in Korean Standard and feasible performances. On the recycled cement, in the case of cement : aggregate is 1 : 7 is satisfied with KS F 4004 : dimensions, water absorption, compressive strength of quality of a standard. So we concluded that it has great feasibility to apply these products to construction industry.

  • PDF

Review Methods of Pumping Effciency using the Concrete flow Table Test (콘크리트 플로 테이블 테스트를 활용한 압송성 검토 방법)

  • Kwon, Hae-Won;Gong, Min-Ho;Kim, Bong-Sup;Yu, Jong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.9-10
    • /
    • 2016
  • This study is purposed to review the confirm method of pumping efficiency using the concrete flow table test in Korea environment. This test method is registered as the "EN 12350-5, Testing fresh concrete. Flow table test" in Eurocode. When applying this test in the Korea construction environment, we reviewed that reasonably apply on the Korean construction Environment. As a result, test results analysis showed that the reality looks a big difference. Its cause is believed to be due to the shape of coarse & fine aggregate. But it will be better predict method, through the correlation analysis of construction data and the standard(Placing Concrete by pumping Methods(ACI Manual of concrete Practice 304.2R-96)).

  • PDF

Analysis on Durability Performance Enhancement and Economical Efficiency through Chloride Protection for Concrete Structures (콘크리트 구조물의 염해도장을 통한 내구성능 향상 및 경제적 효과분석)

  • Chai, Won-Kyu;Kim, Seong-Heon;Son, Young-Hyun;Park, Ju-Won;Lee, Cheung-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.155-160
    • /
    • 2010
  • In this study, detailed assessment for durability performance were performed on the chloride protected concrete structures to investigate the effectiveness of chloride protection. And economical efficiency for the chloride protected concrete structures were studied by LCC(Life Cycle Cost) analysis. In the comparison result of the first section repair time, it was found that the chloride protected concrete structures was economical better than the non-protected concrete structures in the long term. According to the analysis result of the accumulated chloride concentration by used time and chloride ion concentration by depth, it can be seen that the permeation through time from chloride has increased two times in the chloride protected concrete structures.

Evaluation of Fire Performance for High Strength Concrete Mock-up Column with Fiber by Unloaded Fire Test (비재하 내화시험에 의한 섬유혼입 고강도 콘크리트 Mock-up 기둥의 내화성능 평가)

  • Song, Young-Chan;Kim, Yong-Ro;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.97-100
    • /
    • 2009
  • Fire resistance properties and mechanical properties of high strength concrete mock-up column using organic fiber by KS F 2257 Methods of fire resistance test for elements of building construction and compression test was investigated for application of precast concrete column method of high rise building in this study. As a test result, it was appeared that ECC permanent form is available as fire resistance method of high strength concrete and new precast concrete construction method for facilitating construction of high rise building.

  • PDF

Hydration Heat and Strength Properties of Mass Concrete Transfer Girder (고강도 매스 콘크리트-보의 수화열 및 강도특성)

  • Kang, Yeon-Woo;Kim, Gyu-Yong;Kim, Soon-Mook;Kim, Soo-Bong;Han, Jang-Hun;Jung, Jae-Yung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.28-29
    • /
    • 2013
  • When concrete was hardened, it should had considered a crack to make internal stress by hydration heat. For control of crack, admixture was use to change cement because hydration heat was effect to cement. High strength mass concrete had much hydration heat with high volume of cement. It was necessary to reduce hydration heat in construction method. In this study, it evaluates hydration heat, compressive strength of transfer concrete girder regard to field construction type such as separation, whole etc. Also, we test compressive strength of concrete with core and mold specimen.

  • PDF