• Title/Summary/Keyword: Concrete Mixing

Search Result 1,008, Processing Time 0.032 seconds

Recycle of the Glass fiber Obtained from the Roving Cloth of FRP II: Study for the Physical Properties of fiber-reinforced Concrete (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 II: 섬유강화 콘크리트의 물성에 관한 연구)

  • Kim, Yong-Seop;Lee, Seung-Hee;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.46-49
    • /
    • 2008
  • Recycling glass fiber, 'F-fiber,' was obtained by the separation of the roving layer from waste FRP and the concrete products or structures were considered for its application. Experiment was carried out for the bending strength of aggregate (2.45 of cement) by weight and F-fiber (density of 1.45, volume ratio to all of the aggregate and the cement). Whereas the specimen containing 1% F-fiber showed the bending strength 23% higher than that without F-fiber after curing far 28 days, the one with 0.5% F-fiber did not give any change. It could be found, therefore, that the minimum mixing amount should be larger than 0.5% fur the strength reinforcement. One of the reinforcing concrete product, bench flume, containing 1% F-fiber showed 21% increment of bending strength In contrast to that without F-fiber.

  • PDF

A Study on the Evaluating Shrinkage Cracking Properties of Concrete by Size of Specimen of Plat-Ring Restrained Test Method (판상-링형 구속시험방법의 시험체 치수에 따른 콘크리트 수축균열 특성 평가에 관한 연구)

  • Choi, Hyeong-Gil;Nam, Jeong-Soo;Na, Chul-Sung;Back, Yong-Kwan;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.581-584
    • /
    • 2008
  • In this study, it is willing to present that fundamental data for proposing quantitatively shrinkage cracking evaluation method such as plat-ring type restrained test method. To examine suitable size of specimen of plat-ring type restrained test method, Evaluated concrete about restrained shrinkage crack properties of numerical analysis of 3D solid element using the MIDAS program, drying shrinkage deformation, restrained shrinkage stress, crack area and crack point with inside ring diameter of specimen in 100mm, 150mm, 200mm and high of Specimen in 30mm, 50mm after curing in condition of constant temperature and usual habit of temperature 20${\pm}$3$^{\circ}$C, humidity 60${\pm}$5%. As a result, it was available about suitable estimation with inside ring diameter of specimen in more than 150mm and high of Specimen in 50mm. Hereafter, it is considered that the study concerning environmental condition and mixing factor in plat-ring type restrained test method is need.

  • PDF

Reliability Analysis of Steel Fiber Reinforced Concrete Continuous Beams (강섬유 보강 철근콘크리트 연속보의 신뢰성 해석)

  • Yoo Han-Shin;Jang Hwa-Sup;Kwak Kae-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.443-449
    • /
    • 2004
  • Methods for mixing variable types of steel fibers have been developed recently to suppress outbreak of crack or to control the width of crack and improve the load resistible capacity at the same time. On the other hand, uncertainty by complex nature of destruction dynamics of steel fiber reinforced concrete(SFRC) is included. In this study, analysis of reliance considering uncertainty of SFRC beam is done. For this, intensity limit state model was proposed. Moreover, characteristic values about almost every kinds of probability variables were collected and presented according to home and foreign references. Process of improving uncertainty from the result of experiments by Bayseian updating method is also proposed on the purpose of offering better statistical characteristic values with more data in the new future. Fatigue fracture probability equation is proposed and needed statistical characteristic values were presented to analyze fatigue reliance

A Statistical Analysis on Hydration Heat and Autogenous Shrinkage of High Strength Concrete in Early Age Using Blast Furnace Slag (고로슬래그 미분말을 다량 사용한 고강도 콘크리트의 초기 수화발열 및 자기수축 특성에 관한 통계적 분석)

  • Koo, Kyung-Mo;Nam, Jeong-Soo;Lee, Eui-Bae;Kim, Young-Duck;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.657-660
    • /
    • 2008
  • In this study, quantitative analysis on effect of hydration heat and autogenous shrinkage of concrete using BFS was studied. Especially, it analyze section data statistically which hydration heat and autogenous shrinkage rise, and it appeared the correlation of hydration heat and autogenous shrinkage as well as quantitative coefficients of the main properties. As a result, the section which hydration heat and autogenous shrinkage of BFS-50 rise rapidly is delayed than OPC, but the slope of hydration heat and autogenous shrinkage in that section appeared similar shape in each mixing. Finally it will be possible to control the amount of autogenous shrinkage because hydration heating velocity and autogenous shrinking velocity are decreased by using BFS.

  • PDF

Technology on the Shrinkage Reduction of High Performance Concrete (고성능 콘크리트의 수축 저감 기술)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1101-1104
    • /
    • 2008
  • Recently, active researches are conducted on high performance concrete(HPC) exhibiting high strength and high fluidity. These researches are resulting in increased applications on real structures. In order to satisfy the required performances, HPC makes use of large quantities of binder and presents low water-cementitious material ratio. Such mixing is increasing significantly the autogenous shrinkage, which subsequently is likely to favor the potential development of cracks. Therefore, we investigated the effect of used materials and mix proportions on the shrinkage properties of HPC, and of the use of expansive additives and shrinkage reducing agents on the HPC. The autogenous shrinkage of HPC using blast furnace slag are tend to be increased, in some case have the potential development of cracks by only the autogenous shrinkage. Also the using method in combination with expansive additive and shrinkage reducing agent is more effective than the separately using method of that.

  • PDF

Evaluation of Concrtet Properties Using Silicon-Based Repellent (실리콘기반 침투강화제를 사용한 콘크리트의 내구특성 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung;Lee, Byung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • Currently, the most commonly used decontamination agent in the country is calcium chloride, and the use of decontamination agents nationwide is on the rise due to climate change in the country. The deicing agent, aimed at deicing snow, is sprayed and the chloride is frozen and thawed by the dissolved surface water, causing various damages such as deterioration to the concrete. Therefore, in this study, the reactive urethane polymer was manufactured to coat concrete surface protection material, which is a method that prevents moisture from externally penetrating by applying to concrete surfaces, and the mixing agent was selected through the size control of molecules and surface modification, and the properties of penetrant stiffening agents and the application method of concrete was evaluated.

Evaluation of Reproducibility for Mechanical Properties of Lightweight Concrete using Bottom Ash Aggregates and Foam (바텀애시 골재와 기포를 이용한 경량 콘크리트의 역학적 특성에 대한 재현성 평가)

  • Ji, Gu-Bae;Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • The objective of this study is to examine the reproducibility for compressive strength development and mechanical properties of lightweight concrete made using bottom ash aggregates and foam(LWC-BF). Based on the mix proportions conducted by Ji et al., six identical mixes were prepared with different actual foam volume ratios from 0% to 25% and water-to-binder ratios from 25% to 30%. The presently measured properties, including initial slump, slurry density, compressive strength gains at different ages, splitting tensile strength, and modulus of rupture, were very close to those determined in the previous tests by Ji et al. Thus, the developed LWC-BF has a good potential in obtaining a reproducibility for compressive strength development and mechanical properties even though the troubles of mixing control owing to the addition of preformed foam.

Mix design and early-age mechanical properties of ultra-high performance concrete

  • Tang, Chao-Wei
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.335-345
    • /
    • 2021
  • It is known from the literature that there are relatively few studies on the engineering properties of ultra-high performance concrete (UHPC) in early age. In fact, in order to ensure the safety of UHPC during construction and sufficient durability and long-term performance, it is necessary to explore the early behavior of UHPC. The test parameters (test control factors) investigated included the percentage of cement replaced by silica fume (SF), the percentage of cement replaced by ultra-fine silica powder (SFP), the amount of steel fiber (volume percent), and the amount of polypropylene fiber (volume percentage). The engineering properties of UHPC in the fresh mixing stage and at the age of 7 days were investigated. These properties include freshly mixed properties (slump, slump flow, and unit weight) and hardened mechanical properties (compressive strength, elastic modulus, flexural strength, and splitting tensile strength). Moreover, the effects of the experimental factors on the performance of the tested UHPC were evaluated by range analysis and variance analysis. The experiment results showed that the compressive strength of the C8 mix at the age of 7 days was highest of 111.5 MPa, and the compressive strength of the C1 mix at the age of 28 days was the highest of 128.1 MPa. In addition, the 28-day compressive strength in each experimental group increased by 13%-34% compared to the 7-day compressive strength. In terms of hardened mechanical properties, the performance of each experimental group was superior to that of the control group (without fiber and without additional binder materials), with considerable improvement, and the experimental group did not produce explosive or brittle damage after the test. Further, the flexural test process found that all test specimens exhibited deflection-hardening behavior, resulting in continued to increase carrying capacity after the first crack.

An Experimental Study on Development of EMP Shielding Concrete Using Carbon-Based Materials and Industrial By-Products (카본계 재료 및 산업부산물을 활용한 EMP 차폐 콘크리트 개발에 관한 실험적 연구)

  • Min-Sung Kim;Cheol-Hyun Yoon;Seung-Ho Byun;Tae-Beom Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.48-54
    • /
    • 2023
  • In this research, The basic physical properties and EMP shielding performance by thickness were evaluated for optimum composition of EMP shield concrete that can be applied on-site by mixing carbon-based materials with high conductivity into concrete that uses electric furnace oxidized slag (EOS). As a result of the evaluation, it was confirmed that the slump decreased as the amount of mixed carbon fib er (CF) increased, and increased when milled carb on (MCF) was mixed. As for the compressive strength, it was confirmed that EOS enhanced the strength compared to NA, and it was confirmed that the strength decreased when CF and MCF were mixed. As the thickness of the EMP shielding measurement increases, the shielding rate increases, and it was confirmed that the type of conductive material and the thickness of the test specimen have a greater influence on the shielding rate than the Amount of conductive material added. As a result of a comparative evaluation, EOS CF 0.2 is considered suitable for EMP shield concrete formulation.

Improvement of Nitrogen Oxide Removal of Concrete Sidewalk Block Using by Conductive Photocatalyst (전도성 광촉매를 이용한 콘크리트 블록의 대기중 질소산화물 저감에 관한 연구)

  • Geun-Guk Bae;In-Sook Cho;Yong-Sik Ahn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.493-500
    • /
    • 2023
  • The use of TiO2 photocatalyst in the production of concrete blocks for the purpose of nitrogen oxide reduction is an issue of controversy due to the conflicting evidence on its effectiveness. Efforts have been made to reduce the level of nitrogen oxides in the environment by using of titanium dioxide (TiO2). This study examined the effect of incorporating activated carbon into concrete blocks on the reduction of nitrogen oxides released into the atmosphere and the durability of the blocks. The efficiency of photocatalyst was enhanced through the addition of a surrounding conductive substance. The addition of activated carbon resulted in a significant increase in the electrical conductivity of photocatalytic blocks and improved durability. The cement mixture using 5 % TiO2 and 15 % activated carbon exhibited the optimal mixing ratio for the purpose of nitrogen oxide removal. The effect of the addition of conductive carbon to the photocatalytic blocks was discussed with the results of conductivity, flexural and comprssive strength and nitrogen oxide removal test. The relationship between the addition of conductive carbon to the photocatalytic blocks and its resulting effects have been studied by several tests, including conductivity, flexural and compressive strength, and nitrogen oxide removal.