• Title/Summary/Keyword: Concrete Beams and Columns

Search Result 263, Processing Time 0.026 seconds

Overview of the Benefits of Structural Fire Engineering

  • Jowsey, Allan;Scott, Peter;Torero, Jose
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • The field of structural fire engineering has evolved within the construction industry, driven largely by the acceptance of performance-based or goal-based design. This evolution has brought two disciplines very close together - that of structural engineering and fire engineering. This paper presents an overview of structural systems that are frequently adopted in tall building design; typical beams and columns, concrete filled steel tube columns and long span beams with web openings. It is shown that these structural members require a structural analysis in relation to their temperature evolution and failure modes to determine adequate thermal protection for a given fire resistance period. When this is accounted for, a more explicit understanding of the behaviour of the structure and significant cost savings can be achieved. This paper demonstrates the importance of structural fire assessments in the context of tall building design. It is shown that structural engineers are more than capable of assessing structural capacity in the event of fire using published methodologies. Rather than assumed performance, this approach can result in a safe and quantified design in the event of a fire.

Nonlinear Finite Element Analysis of Reinforced Concrete Planar Members Using Rotating Orthotropic Axes Model (이방향성 회전 직교축 모델을 이용한 철근콘크리트 면부재의 비선형 유한요소해석)

  • 박홍근
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.117-127
    • /
    • 1995
  • The objective of this research is to investigate the effectiveness of rotating orthotropic axes model in analyzing reinforced concrete planar members under cyclic as well as monotonic loading. The structural members to be addressed are moderately reinforced beams, columns, beam-column joints, and shear walls, whose failure occurs due to compressive crushing after extensive crack propagation, The rotating orthotropic axes model which is usually used for monotonic loading is developed for cyclic loading. With the existing cyclic material models of reinforcing steel and bond-slip, this material model is used for the finite element analysis. For monotonic loading, the analytical results of the rotating orthotropic axes model are compared with reinforced concrete beams which have brittle failure. For Shear wall members under cyclic loading, the analyses are compared with the experiments for the ultimate load capacity, nonlinear deformation, and pinching effect due to crack opening and closing.

  • PDF

Analysis on the Behavior of Modified DDC, Precast Beam-Column Concrete Connectors for Apartments (공동주택을 위한 건식 프리캐스트 보-기둥 변형 DDC 접합부의 거동분석)

  • Song, Hyung-Soo;Lee, Bo-Kyung;Yu, Sung-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.9-12
    • /
    • 2005
  • Four precast concrete beam-column connectors for the apartment buildings were considered to develop a modified model which was adapt to domestic construction conditions from the DDC(Dywidag Ductile Connectors) of Germany. Special H-shape steel were used to decrease the width of column and beams for the construction of external frames of apartments. It was found that the DDC had high joint strength and ductility, however failed in x-shape crackings in the columns. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The test result of modified one with grouting were compared to that of the one without grouting within the duct. The one with grouting showed higher strength and ductility in failure than that without grouting.

  • PDF

Analytic Investigation on Inelastic Behavior of Reinforced Concrete Frame with Seismic Detail (내진 상세 철근콘크리트 골조의 비탄성 거동에 관한 해석적 연구)

  • 박철용;이한선;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.466-472
    • /
    • 1996
  • The nonlinear analysis was perforned for a 2-bay 2-story moment-resisting reinforced concrete plane frame with seismic detail using KDARC 2D program. The analytical models consist of the material model, the member model, the hysteretic model, and the damage model etc. The conclusion based on the results of analysis is as following. : (1) Story shear-displacement relationship is similar to the experiment result but from the energy point of view, the analysis relationship is similar to the experiment result but from the energy point of view, the analysis result was different from the experiment result. (2) Plastic hinges were found to occur mainly in beams at first story while all the columns had plastic hinges throughout the structure. (3) Failure mode is a little different from experiment result in the yielding mechanism. (4) Damage index isabout 0.25. This means that the degree of damage is moderate and can be repairable.

  • PDF

The Analytical Study on the Structural Performance of Beam-Column Connections of RC Column and Steel Beam (철근 콘크리트 기둥과 철골 보 접합부의 거동 평가틀 위한 해석적 연구)

  • Hong, Seong-Heon;Han, Sang-Whan;Ryu, Cheon;Lee, Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.110-116
    • /
    • 1998
  • The three-dimensional nonlinear analysis on the partial tension experiment of Beam-Column connections in hybrid connections with RC columns and S beams is simulated. In this paper, mechanical characteristics between steel plates and concrete is investigated. Also the stress transfer mechanism prior to beam-column connection analysis was considered by using joint element.

  • PDF

An Experimental Study of Precast concrete Alters Cement Types of High-Strength Concrete (시멘트종류를 변화시킨 프리캐스트 고강도 콘크리트의 실험적 연구 - 수화열 온도특성을 중심으로 -)

  • Park, Heung-Lee;Kim, Sung-Jin;Paik, Min-Su;Lee, Seung-Hoon;Park, Byung-Keun;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.119-122
    • /
    • 2009
  • As architectures have recently become high-risers and mega-structured, stable high strength products have been ensured. Accordingly, use of precast concrete accouplement has been increased in order to facilitate air compression and rationalize construction. Since not only external heating but a1so internal temperature rise caused by the accumulation of cement hydration heat in manufacturing process, precast concrete members with large cross-section used for high-rise mega-structure's columns and beams may exhibit different temperature history compared to the precast concrete members for wall and sub-floor with relatively small cross-sections. Therefore, this study aims to elucidate the characteristics of temperature history of mass concrete members cast with high-strength concrete fur precast concrete application. In this study, large cross-sectional precast concrete mock-up, unit cement quantity, and temperature histories in manufacturing precast concrete member under different curing condition were inclusively investigated.

  • PDF

Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach

  • Ozkal, Fatih Mehmet;Uysal, Habib
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.589-597
    • /
    • 2017
  • Strut-and-tie modeling method, which evolved on truss-model approach, has generally been preferred for the design of complex reinforced concrete structures and structural elements that have critical shear behavior. Some structural members having disturbed regions require exceptional detailing for all support and loading conditions, such as the beam-column connections, deep beams, short columns or corbels. Considering the general expectation of exhibiting brittle behavior, corbels are somewhat dissimilar to other shear critical structures. In this study, reinforcement layout of a corbel model was determined by the participation of structural optimization and strut-and-tie modeling methods, and an experimental comparison was performed against a conventionally designed model.

Seismic repair of reinforced concrete beam-column subassemblages of modern structures by epoxy injection technique

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.543-563
    • /
    • 2002
  • The use of the epoxy pressure injection technique to rehabilitate reinforced concrete beam-column joints damaged by strong earthquakes is investigated experimentally and analytically. Two one-half-scale exterior beam-column joint specimens were exposed to reverse cyclic loading similar to that generated from strong earthquake ground motion, resulting in damage. Both specimens were typical of new structures and incorporated full seismic details in current building codes. Thus the first specimen was designed according to Eurocode 2 and Eurocode 8 and the second specimen was designed according to ACI-318 (1995) and ACI-ASCE Committee 352 (1985). The specimens were then repaired with an epoxy pressure injection technique. The repaired specimens were subjected to the same displacement history as that imposed on the original specimens. The results indicate that the epoxy pressure injection technique was effective in restoring the strength, stiffness and energy dissipation capacity of specimens representing a modem design.

Seismic Capacity Design and Retrofit of Reinforced Concrete Staggered Wall Structures

  • Kim, Jinkoo;Choi, Younghoo
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.285-300
    • /
    • 2017
  • This study investigates the seismic performance of a staggered wall structure designed with conventional strength based design, and compares it with the performance of the structure designed by capacity design procedure which ensures strong column-weak beam concept. Then the seismic reinforcement schemes such as addition of interior columns or insertion of rotational friction dampers at the ends of connecting beams are validated by comparing their seismic performances with those of the standard model structure. Fragility analysis shows that the probability to reach the dynamic instability is highest in the strength designed structure and is lowest in the structure with friction dampers. It is also observed that, at least for the specific model structures considered in this study, R factor of 5.0 can be used in the seismic design of staggered wall structures with proposed retrofit schemes, while R factor of 3.0 may be reasonable for standard staggered wall structures.

Model for the evaluation of the beam-column joint ultimate strength -a more simplified version

  • Tsonos, Alexandros-Dimitrios G.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 2019
  • In this study, a well-established model and a new simplified version of it, that help avoid collapses in reinforced concrete structures during strong earthquakes, are presented and discussed. Using this model, the initial formation of plastic hinges and the final concentration of the damages only in beams are accurately assured. The model also assures that the columns and the beam-column joints can remain intact. This model can be applied for the design of modern R/C structures, as well as for the design of strengthening schemes of old R/C structures by the use of reinforced concrete jackets. The model can also predict the form of earthquake damages in old structures but also earthquake damages in the modern structures.