• Title/Summary/Keyword: Concor 분석

Search Result 81, Processing Time 0.021 seconds

A Comparative Study on the Social Awareness of Metaverse in Korea and China: Using Big Data Analysis (한국과 중국의 메타버스에 관한 사회적 인식의 비교연구: 빅데이터 분석의 활용 )

  • Ki-youn Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.71-86
    • /
    • 2023
  • The purpose of this exploratory study is to compare the differences in public perceptual characteristics of Korean and Chinese societies regarding the metaverse using big data analysis. Due to the environmental impact of the COVID-19 pandemic, technological progress, and the expansion of new consumer bases such as generation Z and Alpha, the world's interest in the metaverse is drawing attention, and related academic studies have been also in full swing from 2021. In particular, Korea and China have emerged as major leading countries in the metaverse industry. It is a timely research question to discover the difference in social awareness using big data accumulated in both countries at a time when the amount of mentions on the metaverse has skyrocketed. The analysis technique identifies the importance of key words by analyzing word frequency, N-gram, and TF-IDF of clean data through text mining analysis, and analyzes the density and centrality of semantic networks to determine the strength of connection between words and their semantic relevance. Python 3.9 Anaconda data science platform 3 and Textom 6 versions were used, and UCINET 6.759 analysis and visualization were performed for semantic network analysis and structural CONCOR analysis. As a result, four blocks, each of which are similar word groups, were driven. These blocks represent different perspectives that reflect the types of social perceptions of the metaverse in both countries. Studies on the metaverse are increasing, but studies on comparative research approaches between countries from a cross-cultural aspect have not yet been conducted. At this point, as a preceding study, this study will be able to provide theoretical grounds and meaningful insights to future studies.

A Study on the Characteristics of Amekaji Fashion Trends Using Big Data Text Mining Analysis (빅데이터 텍스트 마이닝 분석을 활용한 아메카지 패션 트렌드 특징 고찰)

  • Kim, Gihyung
    • Journal of Fashion Business
    • /
    • v.26 no.3
    • /
    • pp.138-154
    • /
    • 2022
  • The purpose of this study is to identify the characteristics of domestic American casual fashion trends using big data text mining analysis. 108,524 posts and 2,038,999 extracted keywords from Naver and Daum related to American casual fashion in the past 5 years were collected and refined by the Textom program, and frequency analysis, word cloud, N-gram, centrality analysis, and CONCOR analysis were performed. The frequency analysis, 'vintage', 'style', 'daily look', 'coordination', 'workwear', 'men's wear' appeared as the main keywords. The main nationality of the representative brands was Japanese, followed by American, Korean, and others. As a result of the CONCOR analysis, four clusters were derived: "general American casual trend", "vintage taste", "direct sales mania", and "American styling". This study results showed that Japanese American casual clothes are influenced by American casual clothes, and American casual fashion in Korea, which has been reinterpreted, is completed with various coordination and creative styles such as workwear, street, military, classic, etc., focusing on items and brands. Looks were worn and shared on social networks, and the existence of an active consumer group and market potential to obtain genuine products, ranging from second-hand transactions for limited edition vintages to individual transactions were also confirmed. The significance of this study is that it presented the characteristics of American casual fashion trends academically based on online text data that the public actually uses because it has been spread by the public.

Comparisons of Airline Service Quality Using Social Network Analysis (소셜 네트워크 분석을 활용한 항공서비스 품질 비교)

  • Park, Ju-Hyeon;Lee, Hyun Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.116-130
    • /
    • 2019
  • This study investigates passenger-authored online reviews of airline services using social network analysis to compare the differences in customer perceptions between full service carriers (FSCs) and low cost carriers (LCCs). While deriving words with high frequency and weight matrix based on the text analysis for FSCs and LCCs respectively, we analyze the semantic network (betweenness centrality, eigenvector centrality, degree centrality) to compare the degree of connection between words in online reviews of each airline types using the social network analysis. Then we compare the words with high frequency and the connection degree to gauge their influences in the network. Moreover, we group eight clusters for FSCs and LCCs using the convergence of iterated correlations (CONCOR) analysis. Using the resultant clusters, we match the clusters to dimensions of two types of service quality models ($Gr{\ddot{o}}nroos$, Brady & Cronin (B&C)) to compare the airline service quality and determine which model fits better. From the semantic network analysis, FSCs are mainly related to inflight service words and LCCs are primarily related to the ground service words. The CONCOR analysis reveals that FSCs are mainly related to the dimension of outcome quality in $Gr{\ddot{o}}nroos$ model, but evenly distributed to the dimensions in B&C model. On the other hand, LCCs are primarily related to the dimensions of process quality in both $Gr{\ddot{o}}nroos$ and B&C models. From the CONCOR analysis, we also observe that B&C model fits better than $Gr{\ddot{o}}nroos$ model for the airline service because the former model can capture passenger perceptions more specifically than the latter model can.

A Study on the Strategies for Activating the Vegan Fashion Brand in the Meaning Out - Based on an Instagram Hashtag Analysis - (미닝아웃 시대의 비건 패션 브랜드 활성화 전략 연구 - 인스타그램 해시태그 분석을 중심으로 -)

  • Kyunghee Jung;Soojeong Bae
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.132-149
    • /
    • 2023
  • This study aims to analyze Instagram hashtags based on big data to investigate changes in consumer trends and perceptions of vegan fashion, and to derive strategies for revitalizing vegan fashion brands based on derived results. Among social media, Instagram was selected as a collection channel, and Instagram hashtags for 'Vegan Fashion' were collected from July 1, 2021 to December 31, 2021. After conducting semantic network analysis with the Ucinet 6 program based on the collected data, the CONCOR analysis on vegan fashion showed the following four clusters: 'Veganism practiced with fashion', 'Bag type of vegan fashion brand', 'Sharing vegan fashion', and 'Diversification of eco-friendly products'. Analysis results showed that the Instagram hashtag for vegan fashion confirmed the MZ generation's increased interest in vegan fashion and their thoughts to recommend and share frequently used items or brand products to people around them. CONCOR analysis of vegan fashion brands showed the following four groups: 'Differentiating the material of vegan bags', 'Eco-friendly products of vegan fashion brands', 'Interest in vegan shoes', and 'Donation campaign of vegan fashion brands'. CONCOR analysis on Meaningout showed the following four clusters: 'MZ Generation's Meaningout Start-up', 'Recommendation Platform for Skin Products', 'Value Consumption Trend for Eco-friendly Clothing', and 'Interest in Eco-friendly Packaging'. The results of this study on vegan fashion, a practical eco-friendly movement that can require changes in social responsibility and perception as issues that directly affect animals, the environment, and humans, are expected to provide basic data to help domestic vegan fashion brands develop marketing strategies.

Social perception of the Arduino lecture as seen in big data (빅데이터 분석을 통한 아두이노 강의에 대한 사회적 인식)

  • Lee, Eunsang
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.935-945
    • /
    • 2021
  • The purpose of this study is to analyze the social perception of Arduino lecture using big data analysis method. For this purpose, data from January 2012 to May 2021 were collected using the Textom website as a keyword searched for 'arduino + lecture' in blogs, cafes, and news channels of NAVER website. The collected data was refined using the Textom website, and text mining analysis and semantic network analysis were performed by opening the Textom website, Ucinet 6, and Netdraw programs. As a result of text mining analysis such as frequency analysis, TF-IDF analysis, and degree centrality it was confirmed that 'education' and 'coding' were the top keywords. As a result of CONCOR analysis for semantic network analysis, four clusters can be identified: 'Arduino-related education', 'Physical computing-related lecture', 'Arduino special lecture', and 'GUI programming'. Through this study, it was possible to confirm various meaningful social perceptions of the general public in relation to Arduino lecture on the Internet. The results of this study will be used as data that provides meaningful implications for instructors preparing for Arduino lectures, researchers studying the subject, and policy makers who establish software education or coding education and related policies.

Analysis of Public Perception and Policy Implications of Foreign Workers through Social Big Data analysis (소셜 빅데이터분석을 통한 외국인근로자에 관한 국민 인식 분석과 정책적 함의)

  • Ha, Jae-Been;Lee, Do-Eun
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.1-10
    • /
    • 2021
  • This paper aimed to look at the awareness of foreign workers in social platforms by using text mining, one of the big data techniques and draw suggestions for foreign workers. To achieve this purpose, data collection was conducted with search keyword 'Foreign Worker' from Jan. 1, to Dec. 31, 2020, and frequency analysis, TF-IDF analysis, and degree centrality analysis and 100 parent keywords were drawn for comparison. Furthermore, Ucinet6.0 and Netdraw were used to analyze semantic networks, and through CONCOR analysis, data were clustered into the following eight groups: foreigner policy issue, regional community issue, business owner's perspective issue, employment issue, working environment issue, legal issue, immigration issue, and human rights issue. Based on such analyzed results, it identified national awareness of foreign workers and main issues and provided the basic data on policy proposals for foreign workers and related researches.

Analysis Study on Trends of Library Development Plan by Using Big Data Analysis (빅데이터 분석 기법을 활용한 도서관발전종합계획 동향 분석 연구)

  • Kim, Dongseok;Noh, Younghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.29 no.2
    • /
    • pp.85-108
    • /
    • 2018
  • This study aimed to analyze media reports of the Comprehensive Library Advancement Plan using big data analysis in order to determine trends and implications by period. To do so, related data from 2009 to 2017 were collected from major domestic web portal sites. Words in the collected data were refined through the text mining process and frequency, centrality, and structural equivalence analyses were performed. Results confirmed that, during the implementation of the first and the second phases of the Comprehensive Library Advancement Plan, the focus of the library policy changed from external growth to strengthening internal stability and advancement of library operation, and the media coverage were limited to specific policies such as expansion of library facilities. Findings from this study will serve as useful material for ascertaining the approach to perceive and understand the national library policy represented by the Comprehensive Library Advancement Plan.

Study on the Viewers' Perception of Investigative Journalism Before and After Pandemic Using Big Data (빅데이터를 활용한 팬데믹 전후 탐사보도프로그램에 대한 시청자 인식연구)

  • Kyunghee Kim;Soonchul Kwon;Seunghyun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.311-320
    • /
    • 2023
  • This paper analyzes viewers' perception of investigative journalism before and after COVID-19, and examines the direction of investigative journalism using big data. Based on the previous research set as a social science model, the relationship between words related to big data TV current affairs programs and investigative journalism in this paper was investigated before and after the appearance of COVID-19. We visualized changes in viewers' perception of investigative journalism by analyzing text data obtained through the use of Textom, with TV current affairs programs and investigative journalism as keywords. Data was collected from 2017 to June 2022 and refined for analysis. We visualized connectivity centrality using Ucinet 6.0 and Netdraw, and clustered the number of keywords and their frequency using Concor analysis. Our study found a clear change in viewer perception before and after the pandemic. As an implication of this thesis, big data analysis was conducted with the investigative journalism as the main keyword, and the direction of the investigative journalism was presented based on the analysis. Furthermore, based on previous research, we suggest effective approaches for investigative journalism after the pandemic to better engage viewers.

A Data Analysis and Visualization of AI Ethics -Focusing on the interactive AI service 'Lee Luda'- (인공지능 윤리 인식에 대한 데이터 분석 및 시각화 연구 -대화형 인공지능 서비스 '이루다'를 중심으로-)

  • Lee, Su-Ryeon;Choi, Eun-Jung
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.269-275
    • /
    • 2022
  • As artificial intelligence services targeting humans increase, social demands are increasing that artificial intelligence should also be made on an ethical basis. Following this trend, the government and businesses are preparing policies and norms related to artificial intelligence ethics. In order to establish reasonable policies and norms, the first step is to understand the public's perceptions. In this paper, social data and news comments were collected and analyzed to understand the public's perception related to artificial intelligence and ethics. Interest analysis, emotional analysis, and discourse analysis were performed and visualized on the collected datasets. As a result of the analysis, interest in "artificial intelligence ethics" and "artificial intelligence" favorability showed an inversely proportional correlation. As a result of discourse analysis, the biggest issue was "personal information leakage," and it also showed a discourse on contamination and deflection of learning data and whether computer-made artificial intelligence should be given a legal personality. This study can be used as data to grasp the public's perception when preparing artificial intelligence ethical norms and policies.

A Study on the Factors of Well-aging through Big Data Analysis : Focusing on Newspaper Articles (빅데이터 분석을 활용한 웰에이징 요인에 관한 연구 : 신문기사를 중심으로)

  • Lee, Chong Hyung;Kang, Kyung Hee;Kim, Yong Ha;Lim, Hyo Nam;Ku, Jin Hee;Kim, Kwang Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.354-360
    • /
    • 2021
  • People hope to live a healthy and happy life achieving satisfaction by striking a good work-life balance. Therefore, there is a growing interest in well-aging which means living happily to a healthy old age without worry. This study identified important factors related to well-aging by analyzing news articles published in Korea. Using Python-based web crawling, 1,199 articles were collected on the news service of portal site Daum till November 2020, and 374 articles were selected which matched the subject of the study. The frequency analysis results of text mining showed keywords such as 'elderly', 'health', 'skin', 'well-aging', 'product', 'person', 'aging', 'female', 'domestic' and 'retirement' as important keywords. Besides, a social network analysis with 45 important keywords revealed strong connections in the order of 'skin-wrinkle', 'skin-aging' and 'old-health'. The result of the CONCOR analysis showed that 45 main keywords were composed of eight clusters of 'life and happiness', 'disease and death', 'nutrition and exercise', 'healing', 'health', and 'elderly services'.